如圖,在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=1,AA1=2,D是AA1的中點,E是B1C的中點,
(1)證明:DE∥平面ABC
(2)求二面角C-B1D-B的余弦值.
分析:(1)取G為BC的中點,由E是B1C的中點,知EG∥BB1,且EG=
1
2
BB1,又AD∥BB1,且AD=
1
2
BB1,故EG∥AD,EG=AD,所以四邊形ADEG為平行四邊形從而有DE∥AG,從而有DE∥平面ABC.
(2)由直三棱柱的結(jié)構(gòu)特征,得到B1B⊥BC,再由AB⊥BC,得到BC⊥平面ABB1D.從而有BD⊥B1D,所以BD是CD在平面ABB1D內(nèi)的射影,∠CDB為二面角C-B1D-B的平面角.由向量法能求出二面角C-B1D-B的余弦值.
解答:(1)證明:如圖,E是B1C的中點,取為BC的中點G,連接EG,AG,ED,
在△BCB1中,∵BG=GC,B1E=EC,∴EG∥BB1,且EG=
1
2
BB1,
又AD∥BB1,且AD=
1
2
BB1,
∴EG∥AD,EG=AD,
∴四邊形ADEG為平行四邊形,∴DE∥AG,
又AG?平面ABC,DE?平面ABC,
∴DE∥平面ABC.
(2)解:如圖,以B為原點,BC、BA、BB1分別為x、y、z軸,建立空間直角坐標(biāo)系O-xyz,
則B(0,0,0),C(1,0,0),A(0,1,0),
B1(0,0,2),C1(1,0,2),A1(0,1,2),D(0,1,1),
∵直三棱柱ABC-A1B1C1,∴B1B⊥BC,
又AB⊥BC,AB∩BB1=B,∴BC⊥平面ABB1D.
如圖,連接BD,
在△BB1D中,∵BD=B1D=2,BB1=2,
∴BD2+B1D2=BB12,即BD⊥B1D,
∵BD是CD在平面ABB1D內(nèi)的射影,
∴CD⊥B1D,∴∠CDB為二面角C-B1D-B的平面角.
∵DC=(1,-1,-1),DB=(0,-1,-1),
∴cos∠CDB=
DC
DB
|
DC
| •|
DB
|
=
0+1+1
3
2
=
6
3
,
∴二面角C-B1D-B的余弦值為
6
3
點評:本題考查直線與平面平行的證明,考查二面角的余弦值的求法.解題時要認(rèn)真審題,恰當(dāng)?shù)匾胼o助線,合理地建立空間直角坐標(biāo)系,注意向量量的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊答案