1.將函數(shù)y=$\sqrt{3}$cosx+sinx,(x∈R)的圖象向右平移θ(θ>0)個單位長度后,所得到的圖象關于y軸對稱,若所有可能的θ的值從小到大依次構成數(shù)列{θn},則$\sum_{n=1}^{10}{θ_n}$=(  )
A.$\frac{160π}{3}$B.$\frac{59π}{6}$C.$\frac{325π}{3}$D.$\frac{5π}{6}$

分析 先根據(jù)函數(shù)的圖象的平移和三角形函數(shù)的性質(zhì)可得{θn}為首項$\frac{5π}{6}$的等差數(shù)列,再根據(jù)前n項和公式計算即可.

解答 解:將函數(shù)y=$\sqrt{3}$cosx+sinx=2cos(x-$\frac{π}{6}$)的圖象向右平移θ個單位后所得圖象對應的函數(shù)解析式為y=cos(x-θ-$\frac{π}{6}$),
再根據(jù)所得圖象關于y軸對稱,可得-θ-$\frac{π}{6}$=nπ,n∈z,即 θ=nπ-$\frac{π}{6}$,n∈Z,
∴{θn}為首項$\frac{5π}{6}$的等差數(shù)列,
∴$\sum_{n=1}^{10}{θ_n}$=$\frac{10(\frac{5π}{6}+10π-\frac{π}{6})}{2}$=$\frac{160}{3}$π,
故選:A

點評 本題考查了三角函數(shù)的圖象和性質(zhì),以及等差數(shù)列的求和公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=${({\frac{1}{2}})^{2{x^2}-3x+1}}$的遞減區(qū)間為( 。
A.(1,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知集合A=(-2,4),B=(-∞,a],若A∩B=∅,則實數(shù)a的取值范圍是a≤-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.一個圓錐的底面半徑為2cm,高為6cm,在其中有一個高為xcm的內(nèi)接圓柱.
(1)當x為何值時,圓柱側面積最大?并求出最大值.
(2)設內(nèi)接圓柱底面圓的直徑為a,母線長為b,圓錐的母線長為c,請設計一個算法,當輸入實數(shù)a,b,c,要求輸出這三個數(shù)中最大的數(shù),請寫出算法并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在區(qū)域$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$內(nèi)任取一點P,則點P落在單位圓x2+y2=2內(nèi)的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=2x3-ax+6的一個單調(diào)遞增區(qū)間為[1,+∞),則減區(qū)間是(  )
A.(-∞,0)B.(-1,1)C.(0,1)D.(-∞,1),(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.雙曲線的兩條漸近線為x±2y=0,則它的離心率為$\sqrt{5}或\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)$f(x)=\frac{{\sqrt{x+4}+\sqrt{1-2x}}}{{{x^2}-1}}$的定義域為( 。
A.$[-4,-1)∪(-1,\frac{1}{2}]$B.[-4,-1)∪(-1,1)C.$[\frac{1}{2},1)∪(1,+∞)$D.[-4,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知角α的終邊落在直線5x-12y=0上,則cosα=(  )
A.±$\frac{12}{13}$B.$\frac{12}{13}$C.$±\frac{5}{13}$D.-$\frac{5}{13}$

查看答案和解析>>

同步練習冊答案