解:(Ⅰ)由已知,,所以3a2=4b2,①
又點在橢圓C上,所以,②
由①②解之,得a2=4,b2=3.故橢圓C的方程為.
(Ⅱ)當直線l有斜率時,設(shè)y=kx+m時,則由
消去y得,(3+4k2)x2+8kmx+4m2﹣12=0,
△=64k2m2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)>0,
③設(shè)A、B、P點的坐標分別為(x1,y1)、(x2,y2)、(x0,y0),則:,
由于點P在橢圓C上,所以.從而,
化簡得4m2=3+4k2,經(jīng)檢驗滿足③式.
又點O到直線l的距離為:.
當且僅當k=0時等號成立,當直線l無斜率時,由對稱性知,點P一定在x軸上,
從而P點為(﹣2,0),(2,0),直線l為x=±1,
所以點O到直線l的距離為1,O到直線l的距離最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題
(本題滿分14分)
如圖,已知橢圓=1(a>b>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·=,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題
已知橢圓(a>b>0),點在橢圓上。
(I)求橢圓的離心率。
(II)設(shè)A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點定位】本小題主要考查橢圓的標準方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運算求解能力、綜合分析和解決問題的能力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:解答題
已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河北省邯鄲市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分分)
(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點.
(1)求橢圓的方程;
(2)若直線與橢圓交于、兩點,,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com