若函數(shù)f(x)是R上的奇函數(shù),且f(x)在[0,+∞)上單調(diào)遞減,則集合A={x|f(log2x-1)<0}=
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:由函數(shù)f(x)是R上的奇函數(shù),且f(x)在[0,+∞)上單調(diào)遞減,可得f(x)在R上單調(diào)遞減,從而f(log2x-1)<0=f(0)可化為log2x-1>0,解出即可.
解答: 解:∵函數(shù)f(x)是R上的奇函數(shù),且f(x)在[0,+∞)上單調(diào)遞減,
故f(x)在R上單調(diào)遞減,
∴f(log2x-1)<0=f(0),
∴l(xiāng)og2x-1>0,解得x>2,
故答案為:(2,+∞).
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查對(duì)不等式的解法,屬基礎(chǔ)題,利用性質(zhì)化抽象不等式為具體不等式是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

春節(jié)期間,某商場(chǎng)進(jìn)行促銷活動(dòng),方案是:顧客每買滿200元可按以下方式摸球兌獎(jiǎng):箱內(nèi)裝有標(biāo)著數(shù)字20,40,60,80,100的小球各兩個(gè),顧客從箱子里任取三個(gè)小球,按三個(gè)小球中最大數(shù)字等額返還現(xiàn)金(單位:元),每個(gè)小球被取到的可能性相等.
(1)求每位顧客返獎(jiǎng)不少于80元的概率;
(2)若有三位顧客各買了268元的商品,求至少有二位顧客返獎(jiǎng)不少于80元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從5男4女中選4位代表,其中至少有2位男生,且至少有1位女生,分配到四個(gè)不同的工廠調(diào)查,不同的分派方法有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=sinx,下列命題正確的有
 
.(寫(xiě)出所有正確命題的序號(hào))
①函數(shù)f(x)任意兩個(gè)零點(diǎn)之間的距離為kπ(k∈Z);
②存在x0>0,x0≤f(x0);
③曲線f(x)=sinx關(guān)于x軸對(duì)稱的圖形與關(guān)于y軸對(duì)稱的圖形重合;
④l1,l2是函數(shù)f(x)=sinx圖象上的任意兩條相互垂直的切線,則l1,l2斜率之和為0;
⑤設(shè)④中l(wèi)1,l2交于P點(diǎn),則P點(diǎn)坐標(biāo)可以是(
π
2
,
π
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn)A(m,m)的任意直線都與曲線C:x2+y2-x-y=0至少有一個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠C=90°,∠A=60°,過(guò)C作△ABC的外接圓的切線CD,BD⊥CD于D.BD與外接圓交于點(diǎn)E,已知DE=5,則△ABC的外接圓的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是圓O的內(nèi)接三角形,PA是圓O的切線,PB交AC于點(diǎn)E,交圓O于點(diǎn)D,若PA=PE,PB=9,PD=1,∠ABC=60°,則EC的長(zhǎng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(x2+
2
x
6的展開(kāi)式中不含x3項(xiàng)的系數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的漸近線方程為x±2y=0,則該雙曲線的離心率為( 。
A、
5
2
B、
5
C、
3
2
D、
5
5
2

查看答案和解析>>

同步練習(xí)冊(cè)答案