已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)證明:
n
2
-
1
3
a1
a2
+
a2
a3
+…+
an
an+1
n
2
(n∈N*)
分析:(I)數(shù)列的遞推公式求數(shù)列的通項(xiàng)公式,根據(jù)等比數(shù)列的定義,只要證明an+1+1=2(an+1),從而可求數(shù)列{an}的通項(xiàng)公式;
(II)根據(jù)數(shù)列的通項(xiàng)公式得
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
1
2
,k=1,2,,n
,再對(duì)其進(jìn)行適當(dāng)?shù)姆趴s即可.
解答:解:(I)∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列.∴an+1=2n
即an=2n-1(n∈N*).
(II)證明:∵
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
1
2
,k=1,2,,n
,
a1
a2
+
a2
a3
++
an
an+1
n
2

ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
3.2k+2k-2
1
2
-
1
3
.
1
2k
,k=1,2,,n
,
a1
a2
+
a2
a3
++
an
an+1
n
2
-
1
3
(
1
2
+
1
22
++
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3
,
n
2
-
1
3
a1
a2
+
a2
a3
++
an
an+1
n
2
(n∈N*)
點(diǎn)評(píng):由數(shù)列的遞推公式,通過(guò)構(gòu)造新的等比數(shù)列求數(shù)列的通項(xiàng)公式,是?贾R(shí)點(diǎn),特別注意新數(shù)列的首項(xiàng),裂項(xiàng)求和是?紨(shù)列求和的方法,并通過(guò)放縮法證明不等式.此題非常好,很典型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案