【題目】如圖,已知菱形與直角梯形所在的平面互相垂直,其中,,,,為的中點(diǎn)
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)為線段上一點(diǎn),,若直線與平面所成角的正弦值為,求的長.
【答案】(Ⅰ)見解析;(Ⅱ);(Ⅲ) .
【解析】
試題
(Ⅰ)要證線面平行,就要證線線平行,考慮到是中點(diǎn),因此取中點(diǎn),可得與平行且相等,從而可證得,所以可證得線面平行;
(Ⅱ)求二面角,可建立空間直角坐標(biāo)系,用向量法求解,考慮到平面與平面垂直,是菱形,因此取中點(diǎn),則有,因此,所以可作,以為軸建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),求出二面角兩個面的法向量,由法向量的夾角可得二面角;
(Ⅲ)在(Ⅱ)的坐標(biāo)系,利用已知得點(diǎn)坐標(biāo),從而可得向量的坐標(biāo),利用向量與平面的法向量夾角的正弦值可求得,最后可得的長度.
試題解析:
(Ⅰ)取的中點(diǎn),連接,則∥∥ ,且,所以四邊形為平行四邊形
所以∥,又平面, 平面,
則∥平面.
(Ⅱ)取 中點(diǎn),連接,則 因?yàn)槠矫?/span> 平面,交線為,則平面
作∥,分別以所在直線為軸建立空間直角坐標(biāo)系,如圖,
則
于是 ,設(shè)平面的法向量 ,
則 令,則
平面的法向量
所以
又因?yàn)槎娼?/span>為銳角,所以其余弦值為.
(Ⅲ)則 ,
,而平面的法向量為,
設(shè)直線與平面所成角為,
于是
于是, .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)存在兩個極值點(diǎn),
①求實(shí)數(shù)的范圍;
②證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,甲乙兩個商場分別開展促銷活動.
(Ⅰ)甲商場的規(guī)則是:凡購物滿100元,可抽獎一次,從裝有大小、形狀相同的4個白球、4個黑球的袋中摸出4個球,中獎情況如下表:
摸出的結(jié)果 | 獲得獎金(單位:元) |
4個白球或4個黑球 | 200 |
3個白球1個黑球或3個黑球1個白球 | 20 |
2個黑球2個白球 | 10 |
記為抽獎一次獲得的獎金,求的分布列和期望.
(Ⅱ)乙商場的規(guī)則是:凡購物滿100元,可抽獎10次.其中,第次抽獎方法是:從編號為的袋中(裝有大小、形狀相同的個白球和個黑球)摸出個球,若該次摸出的個球顏色都相同,則可獲得獎金元;記第次獲獎概率.設(shè)各次摸獎的結(jié)果互不影響,最終所獲得的總獎金為10次獎金之和.
①求證:;
②若某顧客購買120元的商品,不考慮其它因素,從獲得獎金的期望分析,他應(yīng)該選擇哪一家商場?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,試判斷零點(diǎn)的個數(shù);
(Ⅲ)當(dāng)時,若對,都有()成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了普及環(huán)保知識,增強(qiáng)學(xué)生的環(huán)保意識,在全校組織了一次有關(guān)環(huán)保知識的競賽.經(jīng)過初賽、復(fù)賽,甲、乙兩個代表隊(每隊3人)進(jìn)入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設(shè)甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響,用表示乙隊的總得分.
(Ⅰ)求的分布列及數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形, ,點(diǎn)E在棱PB上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時,求AE與平面PDB所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時間的調(diào)查.
(I)應(yīng)從甲、乙、丙三個部門的員工中分別抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.
(i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;
(ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的半焦距為,左焦點(diǎn)為,右頂點(diǎn)為,拋物線與橢圓交于兩點(diǎn),若四邊形是菱形,則橢圓的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為(單位:百元).
(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;
(2)當(dāng)投入的肥料費(fèi)用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com