在△ABC中,a2+b2=
3
ab+c2,則∠C=
30°
30°
分析:由條件利用余弦定理可得cos∠C=
a2+b2-c2
2ab
=
3
2
,由此可得∠C 的值.
解答:解:∵在△ABC中,a2+b2=
3
ab+c2,則由余弦定理可得cos∠C=
a2+b2-c2
2ab
=
3
2
,∴∠C=30°,
故答案為 30°.
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a2=b2+c2+bc,則A=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a2=b2+c2+bc,則A等于( 。
A、120°B、60°C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a2-c2+b2=ab,則角C的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a2+b2-c2=ab,則C為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a2+
2
ab+b2=c2
,則C等于( 。
A、45°B、60°
C、120°D、135°

查看答案和解析>>

同步練習(xí)冊(cè)答案