(2013•湖北)設a>0,b>0,已知函數(shù)f(x)=
(1)當a≠b時,討論函數(shù)f(x)的單調性;
(2)當x>0時,稱f(x)為a、b關于x的加權平均數(shù).
(1)判斷f(1),f(),f()是否成等比數(shù)列,并證明f()≤f();
(2)a、b的幾何平均數(shù)記為G.稱為a、b的調和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.

(1)當a>b>0時,f′(x)>0,函數(shù)f(x)在(﹣∞,﹣1),(﹣1,+∞)上單調遞增;
當0<a<b時,f′(x)<0,函數(shù)f(x)在(﹣∞,﹣1),(﹣1,+∞)上單調遞減.
(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),(1) 若的解集是,求實數(shù)的值;(2) 若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,把邊長為10的正六邊形紙板剪去相同的六個角,做成一個底面為正六邊形的無蓋六棱柱盒子,設其高為h,體積為V(不計接縫).
(1)求出體積V與高h的函數(shù)關系式并指出其定義域;
(2)問當為多少時,體積V最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(a是常數(shù),a∈R)
(1)當a=1時求不等式的解集.
(2)如果函數(shù)恰有兩個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)滿足條件.
(1)求;
(2)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如果函數(shù)的定義域為R,對于定義域內(nèi)的任意,存在實數(shù)使得成立,則稱此函數(shù)具有“性質”。
(1)判斷函數(shù)是否具有“性質”,若具有“性質”,求出所有的值;若不具有“性質”,說明理由;
(2)已知具有“性質”,且當,求上有最大值;
(3)設函數(shù)具有“性質”,且當時,.若交點個數(shù)為2013,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知關于的一元二次函數(shù),設集合,分別從集合P和Q中隨機取一個數(shù)作為
(1)求函數(shù)有零點的概率;
(2)求函數(shù)在區(qū)間上是增函數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設命題p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);命題q:x1,x2是方程x2-ax-2=0的兩個實根,且不等式m2+5m-3≥|x1-x2|對任意的實數(shù)a∈[-1,1]恒成立.若p∧q為真,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)f(x)=,若關于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五個不同的實數(shù)解,求a的取值范圍.

查看答案和解析>>

同步練習冊答案