已知A={x|log2x>1},B={x|y=數(shù)學(xué)公式},則A∩B=


  1. A.
    {x|x>2}
  2. B.
    {x|x≥3}
  3. C.
  4. D.
    {x|x>10}
B
分析:通過對(duì)數(shù)函數(shù)的性質(zhì)求解集合A,通過根式函數(shù)的定義域求解集合B,然后直接求解A∩B.
解答:因?yàn)锳={x|log2x>1}={x|x>2},B={x|y=}={x|x≥3},
所以A∩B={x|x>2}∩{x|x≥3}={x|x≥3}.
故選B.
點(diǎn)評(píng):本題考查集合的交集的求法,對(duì)數(shù)函數(shù)的單調(diào)性求解集合A是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,則f(f(-4))的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log(2x+1)在(-,0)內(nèi)恒有f(x)>0,則a的取值范圍是

A.a>1

B.0<a<1

C.a<-1或a>1

D.-a<-1或1<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆內(nèi)蒙古巴彥淖爾市中學(xué)高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知f(x)=log  (a>0且a≠1).

(1)求f(x)的 定義域;

(2)判斷f(x)的奇偶性并予以證明.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,則f(f(-4))的值為( 。
A.0B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log a (a>0, 且a≠1)

求f(x)的定義域

求使 f(x)>0的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案