11.已知a,b∈R,a2+b2=4,求3a+2b的取值范圍為(  )
A.(-∞,4]B.$[-2\sqrt{13},2\sqrt{13}]$C.[4,+∞)D.(-∞,2$\sqrt{13}$]∪[2$\sqrt{13}$,+∞)

分析 利用換元法,設(shè)a=2sinα,b=2cosα,那么3a+2b=6sinα+4cosα,利用三角函數(shù)的有界限,即可得到答案

解答 解:由題意:a2+b2=4,
設(shè)a=2sinα,b=2cosα,α∈(0,2π)
那么3a+2b=6sinα+4cosα,
=$\sqrt{{6}^{2}+{4}^{2}}sin(α+$φ)
=$2\sqrt{13}sin(α+$φ),其中tanφ=$\frac{2}{3}$.
∵sin(α+φ)的取值范圍是[-1,1]
∴$-2\sqrt{13}$≤3a+2b$≤2\sqrt{13}$
故選:B

點(diǎn)評 本題考查了不等式性質(zhì)運(yùn)用,根據(jù)題意先構(gòu)成等式,換元思想,利用有界限的函數(shù)解題.本題還可以用“斜率”和“柯西不等式”求解;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
是否需要志愿者
性別
需要4030
不需要160270
P(K2≥k)0.050.010.001
k3.8416.63510.828
附:K2的觀測值$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)在犯錯誤的概率不超過0.01的前提下是否可認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.曲線的極坐標(biāo)方程ρ=4sinθ+2cosθ化為直角坐標(biāo)方程為(x-1)2+(y-2)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.要證:a2+b2-1-a2b2≥0,只要證明( 。
A.2ab-1-a2b2≥0B.(a2-1)(b2-1)≥0
C.$\frac{(a+b)2}{2}$-1-a2b2≥0D.a2+b2-1-$\frac{{a}^{4}+^{4}}{2}$≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),
(1)求b的值;
(2)曲線y=f(x)在點(diǎn)(2,2)處的切線斜率-1,求實(shí)數(shù)a,c的值;
(3)若a=2,討論函數(shù)f(x)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C所對的邊為a,b,c,設(shè)S為△ABC的面積,滿足S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$
(1)求角B的大小
(2)求sinA+sinC的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)P(x,y)在橢圓$\frac{x^2}{4}+{y^2}=1$上,則$\frac{3}{4}{x^2}+2x-{y^2}$的最大值為( 。
A.-2B.-1C.2D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ($\sqrt{3}$cosθ-sinθ)=3$\sqrt{3}$,圓C的極坐標(biāo)方程為ρ=2$\sqrt{3}$sinθ.
(1)求直線l和圓C的直角坐標(biāo)方程;
(2)P為直線l上一動點(diǎn),當(dāng)點(diǎn)P到圓心C的距離最小時,求點(diǎn)P的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知角的終邊經(jīng)過點(diǎn)P(-4,3),求sinα,cosα,tanα的值.

查看答案和解析>>

同步練習(xí)冊答案