【題目】已知函數(shù) ,且此函數(shù)圖象過點(1,5).
(1)求實數(shù)m的值;
(2)判斷f(x)奇偶性;
(3)討論函數(shù)f(x)在[2,+∞)上的單調(diào)性?并證明你的結(jié)論.
【答案】
(1)解:∵函數(shù)圖象過點(1,5).1+m=5
∴m=4
(2)解:此時函數(shù)的定義域為:{x|x≠0且x∈R}
∵f(﹣x)=﹣x﹣ =﹣(x+ )=﹣f(x)
∴奇函數(shù)
(3)解:f′(x)=1﹣
∵x≥2
∴f′(x)≥0
∴f(x)在[2,+∞)上單調(diào)遞增
【解析】(1)由圖象過點,將點的坐標代入函數(shù)解析式求解m即可.(2)先看定義域關(guān)于原點對稱,再看f(﹣x)與f(x)的關(guān)系判斷.(3)用導(dǎo)數(shù)法或定義判斷即可.
【考點精析】通過靈活運用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,一動圓經(jīng)過點且與直線相切,設(shè)該動圓圓心的軌跡方程為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)是曲線上的動點,點的橫坐標為,點,在軸上,的內(nèi)切圓的方程為,將表示成的函數(shù),并求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|x≤1,或x≥3},集合B={x|k<x<2k+1},且(UA)∩B=,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣1,1)上的函數(shù)f(x)是奇函數(shù),且函數(shù)f(x)在(﹣1,1)上是減函數(shù),則滿足f(1﹣a)+f(1﹣a2)<0的實數(shù)a的取值范圍是( )
A.[0,1]
B.(﹣2,1)
C.[﹣2,1]
D.(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足,對任意實數(shù)x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表達式;
(3)在(2)的條件下,設(shè)g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)圖象上的點都位于直線y= 的上方,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,圖象關(guān)于原點中心對稱且在定義域上為增函數(shù)的是( )
A.
B.f(x)=2x﹣1
C.
D.f(x)=﹣x3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個算法程序框圖,在集合, 中隨機抽取一個數(shù)值作為輸入,則輸出的的值落在區(qū)間內(nèi)的概率為
A. 0.8 B. 0.6 C. 0.5 D. 0.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +x.
(1)判斷并證明f(x)的奇偶性;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上為增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[1,3]的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com