7.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=2x-y+1的取值范圍為(  )
A.[0,1]B.[0,2]C.[0,3]D.[2,3]

分析 由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$
對(duì)應(yīng)的區(qū)域如圖:
當(dāng)直線z=2x-y+1經(jīng)過A時(shí),目標(biāo)函數(shù)最小,
當(dāng)經(jīng)過B時(shí)最大;由$\left\{\begin{array}{l}{x-1=0}\\{x+y=4}\end{array}\right.$得到A(1,3),
由$\left\{\begin{array}{l}{x+y-4=0}\\{x-y=0}\end{array}\right.$,解得B(2,2)
所以目標(biāo)函數(shù)z=2x-y+1的最大值為2×2-2+1=3,
最小值為2×1-3+1=0;
故目標(biāo)函數(shù)z=2x-y+1的取值范圍為[0,3];
故選:C.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等差數(shù)列{an}中,a3+a9=18-a6,Sn表示數(shù)列{an}的前n項(xiàng)和,則S11=(  )
A.66B.99C.198D.297

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若0<m<n<2,e為自然對(duì)數(shù)的底數(shù),則下列各式中一定成立的是(  )
A.men<nemB.men>nemC.mlnn>nlnmD.mlnn<nlnm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在長為8cm的線段AB上任取一點(diǎn)C,作一矩形,鄰邊長分別等于線段AC,CB的長,則該矩形面積小于15cm2的概率為( 。
A.$\frac{8}{15}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=2sinωx+1(ω>0)在區(qū)間[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函數(shù),則ω的取值范圍是( 。
A.(0,$\frac{3}{4}$]B.(0,1]C.[$\frac{3}{4}$,1]D.[$\frac{3}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$|{\overrightarrow a}|=1$,$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,$({\overrightarrow a+2\overrightarrow b})•\overrightarrow a=3$,則$|{\overrightarrow b}|$的值是( 。
A.3B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A={-1,1,2,3},B={x|x∈R,x2<3},則A∩B={-1,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線過點(diǎn)(2,3),其中一條漸近線方程為$y=\sqrt{3}x$,則雙曲線的標(biāo)準(zhǔn)方程是(  )
A.$\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$B.$\frac{y^2}{3}-\frac{x^2}{2}=1$C.${x^2}-\frac{y^2}{3}=1$D.$\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex(x2+ax+a)(a∈R)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=-1,判斷f(x)是否存在最小值,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案