精英家教網 > 高中數學 > 題目詳情

已知f(x)是定義域為R的偶函數,當x≥0時,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.

(-7,3)
分析:由偶函數性質得:f(|x+2|)=f(x+2),則f(x+2)<5可變?yōu)閒(|x+2|)<5,代入已知表達式可表示出不等式,先解出|x+2|的范圍,再求x范圍即可.
解答:因為f(x)為偶函數,所以f(|x+2|)=f(x+2),
則f(x+2)<5可化為f(|x+2|)<5,即|x+2|2-4|x+2|<5,(|x+2|+1)(|x+2|-5)<0,
所以|x+2|<5,解得-7<x<3,
所以不等式f(x+2)<5的解集是(-7,3).
故答案為:(-7,3).
點評:本題考查函數的奇偶性、一元二次不等式的解法,借助偶函數性質把不等式具體化是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是定義域在R上的奇函數,若f(x)的最小正周期為3,且f(1)>0,f(2)=
2m-3m+1
,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R的奇函數,f(-4)=-2,f(x)的導函數f′(x)的圖象如圖所示,若兩正數a,b滿足f(a+2b)<2,則
a+4
b+4
的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R的偶函數,若f(x+2)=f(x),且當x∈[1,2]時,f(x)=x2+2x-1,那么f(x)在[0,1]上的表達式是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R的奇函數,且在(0,+∞)內有1003個零點,則f(x)的零點的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R的偶函數,若f(x)的最小正周期是2,且當 x∈[1,2]時,f(x)=x2-2x-1,那么f(x)在[0,1]上的表達式是
f(x)=x2-2x-1
f(x)=x2-2x-1

查看答案和解析>>

同步練習冊答案