精英家教網 > 高中數學 > 題目詳情
已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(Ⅰ)若直線l過點P且與圓心C的距離為1,求直線l的方程;
(Ⅱ)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓的方程;
(Ⅲ)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.
【答案】分析:(Ⅰ)分兩種情況:當直線l的斜率存在時,設出直線l的斜率為k,由P的坐標和設出的k寫出直線l的方程,利用點到直線的距離公式表示出P到直線l的距離d,讓d等于1列出關于k的方程,求出方程的解即可得到k的值,利用求出的k和P寫出直線l的方程即可;當直線l的斜率不存在時,得到在線l的方程,經過驗證符合題意;
(Ⅱ)由利用兩點間的距離公式求出圓心C到P的距離,再根據弦長|MN|的一半及半徑,利用勾股定理求出弦心距d,發(fā)現(xiàn)|CP|與d相等,所以得到P為MN的中點,所以以MN為直徑的圓的圓心坐標即為P的坐標,半徑為|MN|的一半,根據圓心和半徑寫出圓的方程即可;
(Ⅲ)把已知直線的方程代入到圓的方程中消去y得到關于x的一元二次方程,因為直線與圓有兩個交點,所以得到△>0,列出關于a的不等式,求出不等式的解集即可得到a的取值范圍,利用反證法證明:假設符合條件的a存在,由直線l2垂直平分弦AB得到圓心必在直線l2上,根據P與C的坐標即可求出l2的斜率,然后根據兩直線垂直時斜率的乘積為-1,即可求出直線ax-y+1=0的斜率,進而求出a的值,經過判斷求出a的值不在求出的范圍中,所以假設錯誤,故這樣的a不存在.
解答:解:(Ⅰ)設直線l的斜率為k(k存在)則方程為y-0=k(x-2).
又圓C的圓心為(3,-2),半徑r=3,
,解得
所以直線方程為,即3x+4y-6=0;
當l的斜率不存在時,l的方程為x=2,經驗證x=2也滿足條件;
(Ⅱ)由于,而弦心距,
所以d=,所以P為MN的中點,
所以所求圓的圓心坐標為(2,0),半徑為|MN|=2,
故以MN為直徑的圓Q的方程為(x-2)2+y2=4;
(Ⅲ)把直線ax-y+1=0即y=ax+1.代入圓C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.
由于直線ax-y+1=0交圓C于A,B兩點,
故△=36(a-1)2-36(a2+1)>0,即-2a>0,解得a<0.
則實數a的取值范圍是(-∞,0).
設符合條件的實數a存在,
由于l2垂直平分弦AB,故圓心C(3,-2)必在l2上.
所以l2的斜率kPC=-2,
,
所以
由于
故不存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB.
點評:此題考查學生掌握直線與圓的位置關系,靈活運用點到直線的距離公式及兩點間的距離公式化簡求值,考查了分類討論的數學思想,以及會利用反證法進行證明,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(Ⅰ)若直線l過點P且與圓心C的距離為1,求直線l的方程;
(Ⅱ)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓的方程;
(Ⅲ)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)若圓C與圓x2+y2+2x-2y+m=0外切,求m的值;
(2)設過點P的直線l1與圓C交于M、N兩點,當|MN|=4時,求以線段MN為直徑的圓Q的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)若直線l過點P且被圓C截得的弦長為4
2
,求直線l的方程;
(2)設過點P的直線l1與圓C交于M、N兩點,當P恰為MN的中點時,求以線段MN為直徑的圓Q的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(2,0)及⊙C:x2+y2-6x+4y+4=0.

(1)當直線l過點P且與圓心C的距離為1時,求直線l的方程;

(2)設過點P的直線與⊙C交A、B兩點,當|AB|=4時,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年天津市漢沽區(qū)高二(上)期中數學試卷(必修2)(解析版) 題型:解答題

已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(Ⅰ)若直線l過點P且與圓心C的距離為1,求直線l的方程;
(Ⅱ)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓的方程;
(Ⅲ)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案