某學(xué)校一位教師要去某地參加全國數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車、輪船、汽車、飛機(jī)直接去的概率分別為0.3、0.1、0.2、0.4.
(1)求他乘火車或乘飛機(jī)去的概率;
(2)他不乘輪船去的概率;

(1)0.7(2)0.9

解析試題分析:設(shè)“乘火車去開會”為事件A,“乘輪船去開會”為事件B,“乘汽車去開會”為事件C,“乘飛機(jī)去開會”為事件D,并且根據(jù)題意可得:這四個事件是互斥事件,(1)根據(jù)概率的基本性質(zhì)公式可得:P(A+D)=P(A)+P(D).(2)根據(jù)對立事件的概率公式可得他不乘輪船去的概率P=1-P(B).
記A=“他乘火車去”,B=“他乘輪船去”,C=“他乘汽車去”,D=“他乘飛機(jī)去”,由題意可知:P(A)=0.3,P(B)=0.1,P(C)=0.2,P(D)=0.4,且事件A、B、C、D兩兩互斥.
(1)“他乘火車或乘飛機(jī)去”即為事件A∪D.P(A∪D)=P(A)+P(D)=0.3+0.4=0.7,即他乘火車或乘飛機(jī)去的概率為0.7;(2)“他不乘輪船去”的事件為,所以P()=1-P(B)=1-0.1=0.9,即他不乘輪船去的概率為0.9.
考點:互斥事件的概率加法公式;概率的基本性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣,小球在下落過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中。已知小球每次遇到黑色障礙物時向左、右兩邊下落的概率都是.

(1)求小球落入A袋中的概率P(A);
(2)在容器入口處依次放入4個小球,記X為落入A袋中小球的個數(shù),試求X=3的概率和X的數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某電視臺“挑戰(zhàn)60秒”活動規(guī)定上臺演唱:
(I)連續(xù)達(dá)到60秒可轉(zhuǎn)動轉(zhuǎn)盤(轉(zhuǎn)盤為八等分圓盤)一次進(jìn)行抽獎,達(dá)到90秒可轉(zhuǎn)兩次,達(dá)到120秒可轉(zhuǎn)三次(獎金累加).

(2)轉(zhuǎn)盤指針落在I、II、III區(qū)依次為一等獎(500元)、二等獎(200元)、三等獎(100元),落在其它區(qū)域不獎勵.
(3)演唱時間從開始到三位評委中至少1人嗚啰為止,現(xiàn)有一演唱者演唱時間為100秒.
①求此人中一等獎的概率;
②設(shè)此人所得獎金為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校組織了一次安全知識競賽,現(xiàn)隨機(jī)抽取20名學(xué)生的測試成績,如下表所示(不低于90分的測試成績稱為“優(yōu)秀成績”):

79
90
82
80
84
95
79
86
89
91
97
86
79
78
86
77
87
89
83
85
 
(1)若從這20人中隨機(jī)選取3人,求至多有1人是“優(yōu)秀成績”的概率;
(2)以這20人的樣本數(shù)據(jù)來估計整個學(xué)校的總體數(shù)據(jù),若從該校全體學(xué)生中(人數(shù)很多)任選3人,記表示抽到“優(yōu)秀成績”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

做拋擲兩顆骰子的試驗:用(x,y)表示結(jié)果,其中x表示第一顆骰子出現(xiàn)的點數(shù),y表示第二顆骰子出現(xiàn)的點數(shù),(1)寫出試驗的基本事件;(2)求事件“出現(xiàn)點數(shù)之和大于8”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知5個乒乓球,其中3個新的,2個舊的,每次取1個,不放回的取兩次,  
求:(1)第一次取到新球的概率.
(2)第二次取到新球的概率.
(3)在第一次取到新球的條件下第二次取到新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一個盒子中,放有標(biāo)號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片的標(biāo)號分別為x、y,設(shè)O為坐標(biāo)原點,點P的坐標(biāo)為.
(1)求隨機(jī)變量 的最大值,并求事件“取得最大值”的概率;
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對實驗中學(xué)高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如圖:
(1)求出表中M,p及圖中a的值;
(2)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求兩人來自同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩支足球隊鏖戰(zhàn)90分鐘踢成平局,加時賽30分鐘后仍成平局,現(xiàn)決定各派5名隊員,每人射一點球決定勝負(fù),設(shè)甲、乙兩隊每個隊員的點球命中率均為0.5.
(1)不考慮乙隊,求甲隊僅有3名隊員點球命中,且其中恰有2名隊員連續(xù)命中的概率;
(2)求甲、乙兩隊各射完5個點球后,再次出現(xiàn)平局的概率.

查看答案和解析>>

同步練習(xí)冊答案