已知關(guān)于x的方程ax2-3x+2=0至多只有一個解,求a的取值范圍.
考點(diǎn):函數(shù)的零點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由“函數(shù)f(x)=ax2-3x+2至多有一個零點(diǎn)”,則有函數(shù)圖象與x軸至多有一個交點(diǎn),即相應(yīng)方程至多有一個根,用判別式法求解即可,要注意a的討論.
解答: 解:當(dāng)a=0時,f(x)=ax2-3x+2=-3x+2=0
∴x=
2
3
符合題意.
當(dāng)a≠0時,f(x)=ax2-3x+2=0
∵函數(shù)f(x)=ax2-3x+2至多有一個零點(diǎn)
∴△=9-8a≤0
∴a≥
9
8

綜上,a的取值范圍是:{a|a=0或a≥
9
8
}
點(diǎn)評:本題主要考查函數(shù)的零點(diǎn),即考查二次函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo),對應(yīng)方程的根,要注意數(shù)形結(jié)合思想的應(yīng)用以及字母a的討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
(1)若sin2A=sin2B+sin2C+sinBsinC,求角A;
(2)若sinA:sinB:sinC=(
3
-1):(
3
+1):
10
,求最大內(nèi)角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={2,3,4},B={2,5},則A∩B等于( 。
A、∅
B、{2}
C、{2,3,5}
D、{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線a?平面α,直線b?平面α,M∈a,N∈b,且M∈l,N∈l,則(  )
A、l?αB、l?α
C、l∩α=MD、l∩α=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各對曲線中,即有相同的離心率又有相同漸近線的是( 。
A、
x2
3
-y2
=1和
y2
9
-
x2
3
=1
B、
x2
3
-y2
=1和y2-
x2
3
=1
C、y2-
x2
3
=1和x2-
y2
3
=1
D、
x2
3
-y2
=1和
x2
9
-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列等式中不正確的是( 。
A、n!=
(n+1)!
n+1
B、
A
m
n
=n
A
m-1
n-1
C、
A
m
n
=
n!
(n-m)!
D、
A
m-1
n-1
=
(n-1)!
(m-n)!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,1,1)、B(2,2,2)、C(3,2,4),則△ABC的面積為(  )
A、
3
B、2
3
C、
6
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求1,3a,5a2,7a3,…(2n-1)an-1的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)對于任意x,y∈R都有f(x+y)=f(x)+f(y)-1,當(dāng)x>0時,f(x)>1,并且f(3)=4.
(1)求證:f(x)是增函數(shù).
(2)求f(x)在[1,2]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案