精英家教網 > 高中數學 > 題目詳情
是否存在常數a、b,使等式+++=-nN*都成立。

 

答案:
解析:

  解:令n=1,2,得,解得

    現用數學歸納法證明對n∈N*都有

  

   證明:(1)當n=k時(k∈N*),等式成立,即成立,則當當n=k+1時,

  

  =

  =

  =

  =

  =

  ∴ 當n=k+1時,等式成立,由(1)(2)知,對一切nN*等式都成立。

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

是否存在常數a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)對于任意的n∈N+總成立?若存在,求出來并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=2sin2x+2
3
sinxcosx
,x∈[0,
π
2
]

(1)求函數f(x)的最值,及相應的x值;
(2)若|f(x)-a|≤2恒成立,求實數a的取值范圍;
(3)若函數g(x)=-2af(x)+2a+b,是否存在常數a,b∈Z,使得g(x)的值域為[-2,4]?若存在,求出相應a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在公差為d(d≠0)的等差數列{an}和公比為q的等比數列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(Ⅰ)求數列{an}與{bn}的通項公式;
(Ⅱ)是否存在常數a,b,使得對于一切正整數n,都有an=logabn+b成立?若存在,求出常數a和b,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•河東區(qū)一模)已知公差不為零的等差數列{xn}和等比數列{yn}中,x1=y1=1,x2=y2,x6=y3.是否存在常數a、b,使得對于一切正整數n,都有xn=logayn+b成立?如果存在,求出a和b的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•虹口區(qū)二模)已知數列{an}滿足a1=2,an+1=2(
n+1n
2an
(1)求數列{an}的通項公式
(2)設bn=(An2+Bn+C)•2n,是否存在常數A、B、C,使對一切n∈N*,均有an=bn+1-bn成立?若存在,求出常數A、B、C的值,若不存在,說明理由
(3)求證:a1+a2+…+an≤(n2-2n+2)•2n,( n∈N*

查看答案和解析>>

同步練習冊答案