已知函數(shù)f(x)=|x+2|+|2x-4|
(1)求f(x)<6的解集;
(2)若關(guān)于的不等式f(x)≥m2-3m的解集是R,求m的取值范圍
(1)不等式的解是{x|0<x<};(2)
解析試題分析:本題考查絕對值不等式的解法和不等式的恒成立問題,考查學(xué)生的分類討論思想和轉(zhuǎn)化能力第一問,利用零點(diǎn)分段法進(jìn)行求解;第二問,利用函數(shù)的單調(diào)性求出最小值證明恒成立問題
試題解析:(I)由題設(shè)知:當(dāng)時,不等式等價與,即; 2分
當(dāng)時,不等式等價與,即; 4分
當(dāng)時,不等式等價與,即無解
所以滿足不等式的解是 6分
(II)由圖像或者分類討論可得的最小值為4 8分
則,解之得,
考點(diǎn):1 絕對值不等式的解法;2 恒成立問題;3 分段函數(shù)的最值問題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于x的不等式kx2-2x+6k<0(k≠0).
(1)若不等式的解集為{x|x<-3或x>-2},求k的值;
(2)若不等式的解集為{x|x∈R,x≠},求k的值;
(3)若不等式的解集為R,求k的取值范圍;
(4)若不等式的解集為∅,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且方程有兩個實(shí)根為.
(1)求函數(shù)的解析式 ;
(2)設(shè),解關(guān)于x的不等式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求不等式的解集;
(2)若關(guān)于的不等式的解集非空,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=|2x+1|-|x-2|.
(Ⅰ)求不等式的解集;
(Ⅱ)若{x|f(x)≥-t}∩{y|0≤y≤1}≠,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com