已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為4,F(xiàn)1,F(xiàn)2分別是橢圓C的左,右焦點(diǎn),直線y=x與橢圓C在第一象限內(nèi)的交點(diǎn)為A,△AF1F2的面積為2
6
,點(diǎn)P(x0,y0)是橢圓C上的動點(diǎn)
(1)求橢圓C的方程
(2)若∠F1PF2為鈍角,求點(diǎn)P的橫坐標(biāo)x0的取值范圍.
分析:(1)先確定b的值,再利用△AF1F2的面積為2
6
,及a2=b2+c2,可確定橢圓C的方程;
(2)若∠F1PF2為鈍角,則
PF1
PF2
<0
,由此可求點(diǎn)P的橫坐標(biāo)x0的取值范圍.
解答:解:(1)∵2b=4,∴b=2,①
由題意,設(shè)A(x,x)(x>0),則
x2
a2
+
x2
b2
=1
,②
∵△AF1F2的面積為2
6
,∴cx=2
6
,③
由①,②,③及a2=b2+c2,解得a=2
3

∴橢圓C的方程:
x2
12
+
y2
4
=1

(2)∠F1PF2為銳角,則
PF1
PF2
<0

∴x
2
0
+y
2
0
<8
,
x
2
0
12
+
y
2
0
4
=1

∴x
2
0
<6
,
-
6
x0
6
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查數(shù)量積運(yùn)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過橢圓C的右頂點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案