在銳角△ABC中,角A、B、C的對邊分別為a、b、c,且滿足(2a-c)cosB=bcosC.
(1)求角B的大。
(2)設
m
=(sinA,1),
n
=(3,cos2A)
,試求
m
n
的取值范圍.
(1)因為(2a-c)cosB=bcosC,
所以(2sinA-sinC)cosB=sinBcosC,…(3分)
即2sinAcosB=sinCcosB+sinBcosC=sin(C+B)=sinA.
而sinA>0,
所以cosB=
1
2
…(6分)
故B=60°…(7分)
(2)因為
m
=(sinA,1),
n
=(3,cos2A)
,
所以
m
n
=3sinA+cos2A…(8分)
=3sinA+1-2sin2A=-2(sinA-
3
4
2+
17
8
…(10分)
0°<A<90°
B=60°
0°<C<90°

0°<A<90°
0°<120°-A<90°
,
所以30°<A<90°,
從而sinA∈(
1
2
,1)
…(12分)
m
n
的取值范圍是(2,
17
8
]
.…(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大;
(Ⅱ)當c=1時,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•張掖模擬)在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范圍;
(2)若a=
3
,求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函數(shù)f(x)的表達式,并指出f(x)的單調(diào)遞減區(qū)間;
(2)在銳角△ABC中,角A、B、C所對的邊分別為a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大。
(Ⅱ)求函數(shù)f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)當c=2a,且b=3
7
時,求a及△ABC的面積.

查看答案和解析>>

同步練習冊答案