精英家教網 > 高中數學 > 題目詳情
15.已知橢圓、定義在R上,,則“、均為奇函數”是“ 為偶函數”的                                                            [答](   )

(A)充分不必要條件.                   (B)必要不充分條件

(C)充要條件.                         (D)既不充分也不必要條件.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距為2c,若
c
a
=
5
-1
2
(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比數列.
(2)黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點為F2(c,0),P為橢圓C上的任意一點.是否存在過點F2、P的直線l,使l與y軸的交點R滿足
RP
=-3
PF2
?若存在,求直線l的斜率k;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點的菱形ADBE的內切圓過焦點F1、F2.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關的真命題,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個命題:
①如果復數z滿足|z+i|+|z-i|=2,則復數z在復平面的對應點的軌跡是橢圓.
②若對任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數列{an}是等差數列或等比數列.
③設f(x)是定義在R上的函數,且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數或偶函數.
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
上述命題中錯誤的個數是( �。�

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:
①如果復數z滿足|z+i|+|z-i|=2,則復數z在復平面上所對應點的軌跡是橢圓.
②設f(x)是定義在R上的函數,且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數或偶函數.
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
④設定義在R上的兩個函數f(x)、g(x)都有最小值,且對任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數或g(x)的最小值為正數.
上述命題中錯誤的個數是( �。�

查看答案和解析>>

科目:高中數學 來源:2010年上海市盧灣區(qū)高考數學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:(a>b>0),其焦距為2c,若(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:(a>b>0)中,a、b、c成等比數列.
(2)黃金橢圓C:(a>b>0)的右焦點為F2(c,0),P為橢圓C上的任意一點.是否存在過點F2、P的直線l,使l與y軸的交點R滿足?若存在,求直線l的斜率k;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點的菱形ADBE的內切圓過焦點F1、F2.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關的真命題,并加以證明.

查看答案和解析>>

同步練習冊答案