如圖,多面體ABC-A1B1C1中,三角形ABC是邊長為4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.
(1)若O是AB的中點,求證:OC1⊥A1B1;
(2)在線段AB1上是否存在一點D,使得CD∥平面A1B1C1,若存在,確定點D的位置;若不存在,請說明理由.
(1)見解析(2)點D是AB1的中點
【解析】(1)證明:取線段A1B1的中點E,連接OE,C1E,CO,
已知等邊三角形ABC的邊長為4,AA1=BB1=2CC1=4,AA1⊥平面ABC,AA1∥BB1∥CC1,
∴四邊形AA1B1B是正方形,OE⊥AB,CO⊥AB,
又∵CO∩OE=O,
∴AB⊥平面EOCC1,
又A1B1∥AB,OC1?平面EOCC1,故OC1⊥A1B1,
(2)設OE∩AB1=D,則點D是AB1的中點,
∴ED∥AA1,ED=AA1,
又∵CC1∥AA1,CC1=AA1,
∴四邊形CC1ED是平行四邊形,∴CD∥C1E.
∵CD?平面A1B1C1,C1E?平面A1B1C1,∴CD∥平面A1B1C1,
即存在點D使得CD∥平面A1B1C1,點D是AB1的中點.
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷2練習卷(解析版) 題型:選擇題
已知常數a,b,c都是實數,f(x)=ax3+bx2+cx-34的導函數為f′ (x),f′(x)≤0的解集為{x|-2≤x≤3},若f(x)的極小值等于-115,則a的值是( )
A.- B. C.2 D.5
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷6練習卷(解析版) 題型:選擇題
下列說法:
①將一組數據中的每個數據都加上或減去同一個常數后,方差恒不變;
②設有一個回歸方程=3-5x,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程=x+必過(,);
④在一個2×2列聯表中,由計算得K2=13.079,則有99%的把握確認這兩個變量間有關系.
其中錯誤的個數是( )
本題可以參考獨立性檢驗臨界值表:
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷5練習卷(解析版) 題型:填空題
已知直線l1:ax-y+2a+1=0和l2:2x-(a-1)y+2=0(a∈R),則l1⊥l2的充要條件是a=________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷5練習卷(解析版) 題型:選擇題
已知雙曲線=1和橢圓=1(a>0,m>b>0)的離心率互為倒數,那么以a,b,m為邊長的三角形是( )
A.銳角三角形 B.直角三角形
C.鈍角三角形 D.銳角或鈍角三角形
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷4練習卷(解析版) 題型:填空題
已知三棱錐P-ABC的各頂點均在一個半徑為R的球面上,球心O在AB上,PO⊥平面ABC,,則三棱錐與球的體積之比為________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷4練習卷(解析版) 題型:選擇題
已知正方體的棱長為1,其俯視圖是一個面積為1的正方形,側視圖是一個面積為的矩形,則該正方體的正視圖的面積等于( )
A. B.1 C. D.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷3練習卷(解析版) 題型:選擇題
已知數列{an}滿足an+1=an-an-1(n≥2),a1=1,a2=3,記Sn=a1+a2+…+an,則下列結論正確的是( )
A.a100=-1,S100=5 B.a100=-3,S100=5
C.a100=-3,S100=2 D.a100=-1,S100=2
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷1練習卷(解析版) 題型:填空題
函數g(x)=x2-2 013x,若g(a)=g(b),a≠b,則g(a+b)=________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com