已知:,αγβγ,bα,bβ
求證:aγbγ
a上任取一點P,過PPQr
βr,      ∴
αr,      ∴,
PQa重合,故ar
b和點P作平面S,
Sα交于PQ1,Sβ交于PQ2
bα,bβ
bPQ1,且bPQ2
于是PQ1PQ2a重合,
ba,  而ar,  ∴br
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

求證:空間四邊形相鄰兩邊中點的連線平行于經過另外兩邊所在的平面.
已知:如圖,空間四邊形中,,分別是,的中點.
求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,正四棱錐P—ABCD的各棱長均為13,M,N分別為PA,BD上的點,且PM∶MA=BN∶ND=5∶8.

(1)求證:直線MN∥平面PBC;
(2)求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知SA、SB、SC是共點于S的且不共面的三條射線,∠BSA=∠ASC=45°,∠BSC=60°,求證:平面BSA⊥平面SAC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于平面和共面的直線m、n,下列命題中真命題是 (        )
A.若m,mn,則nB.若mn,則mn
C.若m,n,則mnD.若m、n所成的角相等,則nm

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

考察正方體6個面的中心,甲從這6個點中任意選兩個點連成直線,乙也從這6個點中任意選兩個點連成直線,則所得的兩條直線相互平行但不重合的概率等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M,N分別是AB,PC的中點.
(1)求二面角P-CD-B的大;
(2)求證:平面MND⊥平面PCD;
(3)求點P到平面MND的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在正方體ABCD-A1B1C1D1中,E為棱CC1的中點
(1)求證:D1B1⊥AE;
(2)求D1B1與平面ABE所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體中,若的中點,則直線垂直于(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案