設(shè)f(x)是R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則f(-2),f(3),f(-π)的大小順序是( 。
分析:利用函數(shù)的單調(diào)性比較函數(shù)值的大小,需要在同一個(gè)單調(diào)區(qū)間上比較,利用偶函數(shù)的性質(zhì),f(-2)=f(2),f(-π)=f(π)轉(zhuǎn)化到同一個(gè)單調(diào)區(qū)間上,再借助于單調(diào)性求解即可比較出大。
解答:解:由已知f(x)是R上的偶函數(shù),所以有f(-2)=f(2),f(-π)=f(π),
又由在[0,+∞]上單調(diào)增,且2<3<π,所以有
f(2)<f(3)<f(π),
所以f(-2)<f(3)<f(-π),
故答案為:f(-π)>f(3)>(-2).
故選:A.
點(diǎn)評:本題考查函數(shù)的奇偶性與函數(shù)的單調(diào)性,以及它們的綜合應(yīng)用,函數(shù)值的大小比較,要利用單調(diào)性,統(tǒng)一在某個(gè)單調(diào)區(qū)間上比較大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義域?yàn)镽的周期函數(shù),且f(x)最小正周期為2,且f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判定f(x)的奇偶性;
(2)試求出函數(shù)f(x)在[-1,2]上的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)三模)已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實(shí)數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,b=
12
,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域是R,對于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)+f(n),
(1)求證f(0)=0;
(2)判斷f(x)在R上的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實(shí)數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,數(shù)學(xué)公式,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市嘉定區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實(shí)數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案