3.若a>b>c,且a+b+c=0,則$\frac{a}{c}$的取值范圍是$(-2,-\frac{1}{2})$.

分析 a+b+c=0,可得a>0,c<0,b=-a-c,根據(jù)a>b>c,可得-a-c<a,$\frac{c}{a}$>-2.將b=-a-c代入b>c,得-a-c>c,可得 $\frac{c}{a}$<-$\frac{1}{2}$,即可得出.

解答 解:∵a+b+c=0,
∴a>0,c<0 ①
∴b=-a-c,且a>0,c<0
∵a>b>c
∴-a-c<a,即2a>-c  ②
∴$\frac{c}{a}$>-2,
將b=-a-c代入b>c,得-a-c>c,即a<-2c  ③解得 $\frac{c}{a}$<-$\frac{1}{2}$,
∴-2<$\frac{c}{a}$<-$\frac{1}{2}$.
∴-2<$\frac{a}{c}$$<-\frac{1}{2}$.
故答案為:$(-2,-\frac{1}{2})$.

點(diǎn)評 本題考查了不等式的性質(zhì)與解法、方程的解法、轉(zhuǎn)化方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知i是虛數(shù)單位,若復(fù)數(shù)z=$\frac{m+i}{1+2i}$(m∈R)是純虛數(shù),則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,兩條漸近線分別為l1,l2,過F1作F1A⊥l1于點(diǎn)A,過F2作F2B⊥l2于點(diǎn)B,O為原點(diǎn),若△ABO是邊長為$\sqrt{3}$的等邊三角形,則雙曲線的方程為( 。
A.$\frac{x^2}{21}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{21}=1$C.$\frac{x^2}{3}-\frac{y^2}{9}=1$D.$\frac{x^2}{9}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知α是第三象限角,則$\frac{α}{2}$是( 。
A.第一象限角B.第二象限角
C.第一或第四象限角D.第二或第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列關(guān)系中,是相關(guān)關(guān)系的有多少個( 。
①利息與利率                                ②學(xué)生的身高與學(xué)生的學(xué)習(xí)成績之間的關(guān)系
③居民收入與儲蓄存款                  ④學(xué)生的學(xué)習(xí)態(tài)度與學(xué)習(xí)成績之間的關(guān)系.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定積分${∫}_{0}^{\frac{π}{3}}$(x2+sinx)dx的值為( 。
A.$\frac{{π}^{3}}{81}$+$\frac{1}{2}$B.$\frac{{π}^{3}}{81}$-$\frac{1}{2}$C.$\frac{2π}{3}$-$\frac{1}{2}$D.$\frac{2π}{3}$+$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以下5個命題,其中真命題的個數(shù)有(  )
①從等高條形圖中可以看出兩個變量頻數(shù)的相對大小
②兩個隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對值越接近于1;
③在回歸直線方程$\hat y$=0.2x+12中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量$\hat y$平均增加0.2個單位;
④若K2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺。
 ⑤殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適,帶狀區(qū)域的寬度越窄,說明擬合精度越高.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在如圖所示的平面直角坐標(biāo)系中,已知點(diǎn)A(1,0)和點(diǎn)B(-1,0),|$\overrightarrow{OC}$|=1,且∠AOC=x,其中O為坐標(biāo)原點(diǎn).
(1)若x=$\frac{3π}{4}$,設(shè)點(diǎn)D為線段OA上的動點(diǎn),求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|的最小值;
(2)若x∈(0,$\frac{π}{2}$),向量$\overrightarrow m=\overrightarrow{BC}$,$\overrightarrow n=(1-cosx,sinx-2cosx)$,求$\overrightarrow m•\overrightarrow n$的最小值及對應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=tan $\frac{x}{2}$是(  )
A.周期為2π的奇函數(shù)B.周期為$\frac{π}{2}$的奇函數(shù)
C.周期為π的偶函數(shù)D.周期為2π的偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案