分析 a+b+c=0,可得a>0,c<0,b=-a-c,根據(jù)a>b>c,可得-a-c<a,$\frac{c}{a}$>-2.將b=-a-c代入b>c,得-a-c>c,可得 $\frac{c}{a}$<-$\frac{1}{2}$,即可得出.
解答 解:∵a+b+c=0,
∴a>0,c<0 ①
∴b=-a-c,且a>0,c<0
∵a>b>c
∴-a-c<a,即2a>-c ②
∴$\frac{c}{a}$>-2,
將b=-a-c代入b>c,得-a-c>c,即a<-2c ③解得 $\frac{c}{a}$<-$\frac{1}{2}$,
∴-2<$\frac{c}{a}$<-$\frac{1}{2}$.
∴-2<$\frac{a}{c}$$<-\frac{1}{2}$.
故答案為:$(-2,-\frac{1}{2})$.
點(diǎn)評 本題考查了不等式的性質(zhì)與解法、方程的解法、轉(zhuǎn)化方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{21}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{21}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{9}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | ||
C. | 第一或第四象限角 | D. | 第二或第四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{π}^{3}}{81}$+$\frac{1}{2}$ | B. | $\frac{{π}^{3}}{81}$-$\frac{1}{2}$ | C. | $\frac{2π}{3}$-$\frac{1}{2}$ | D. | $\frac{2π}{3}$+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 周期為2π的奇函數(shù) | B. | 周期為$\frac{π}{2}$的奇函數(shù) | ||
C. | 周期為π的偶函數(shù) | D. | 周期為2π的偶函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com