在△ABC中,a.b.c分別是角A.B.C的對邊,若a-b=
2
-1,cosA=
2
5
5
.cosB=
3
10
10
則邊c的值為( 。
分析:利用同角三角函數(shù)的基本關(guān)系求出sinA和 sinB,利用誘導公式求出cosC,由正弦定理
a
sinA
=
b
sinB
,以及 a-b=
2
-1 求得a、b的值,再由余弦定理求得c的值.
解答:解:在△ABC中,cosA=
2
5
5
  ,cosB=
3
10
10
,∴sinA=
5
5
,sinB=
10
10
,
cosC=-cos(A+B)=-cosAcosB+sinAsinB=-
2
2

由正弦定理
a
sinA
=
b
sinB
,以及 a-b=
2
-1 可得,a=
2
,b=1.
由余弦定理得,c2=a2+b2-2ab•cosC=2+1-2
2
×(-
2
2
)=5,c=
5

故選D.
點評:本題主要考查同角三角函數(shù)的基本關(guān)系,誘導公式,正弦定理以及余弦定理的應用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C為三個內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2
;
③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案