無窮數(shù)列{an}中,若an=
1
2n
,則
lim
n→∞
(a1+a2+a3+a4+…+a2n)
=
1
1
分析:求出數(shù)列的前2n項和,然后求出數(shù)列的極限.
解答:解:因為無窮數(shù)列{an}中,an=
1
2n
,所以數(shù)列是等比數(shù)列,首項為
1
2
,公比為
1
2
,
所以a1+a2+a3+a4+…+a2n=
1
2
(1-(
1
2
)
2n
)
1-
1
2
=1-(
1
2
)
2n
,
所以
lim
n→∞
(a1+a2+a3+a4+…+a2n)
=
lim
n→∞
(1-(
1
2
)
2n
)
=1.
故答案為:1.
點評:本題考查數(shù)列的極限的求法,數(shù)列的求和的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am是首項為10,公差為-2的等差數(shù)列;am+1,am+2,…a2m是首項為
1
2
,公比為
1
2
的等比數(shù)列(m≥3,m∈N*),并對任意n∈N*,均有an+2m=an成立.
(1)當(dāng)m=12時,求a2010;
(2)若a52=
1
128
,試求m的值;
(3)判斷是否存在m,使S128m+3≥2010成立,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am是以10為首項,以-2為公差的等差數(shù)列;am+1,am+2,…,a2m是以
1
2
為首項,以
1
2
為公比的等比數(shù)列(m≥3,m∈N*);并且對一切正整數(shù)n,都有an+2m=an成立.若a23=-2,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中a1=1,且滿足從第二項開始每一項與前一項的比值為同一個常數(shù)-
1
2
,則無窮數(shù)列{an}的各項和
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,a3,…,am是首項為10,公差為-2的等差數(shù)列,am+1,am+2,am+3,…,a2m是首項為
1
2
,公比為
1
2
的等比數(shù)列(其中m≥3,m∈N*),并對任意的n∈N*,均有an+2m=an成立.
(Ⅰ)當(dāng)m=12時,求a2014
(Ⅱ)若a52=
1
128
,試求m的值;
(Ⅲ)判斷是否存在m(m≥3,m∈N*),使得S128m+3≥2014成立?若存在,試求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案