已知函數(shù)+bx(a>0)且f′(1)=0,
(1)試用含a的式子表示b,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)為函數(shù)f(x)圖象上不同兩點,G(x,y)為AB的中點,記AB兩點連線斜率為K,證明:f′(x)≠K.
【答案】分析:(1)根據(jù)對數(shù)函數(shù)的定義求得函數(shù)的定義域,根據(jù)f(x)的解析式求出f(x)的導函數(shù),利用f′(1)=0,代入導函數(shù)化簡即可得到a與b的關系式,用a表示出b;然后分別令導函數(shù)大于0和小于0得到關于x的不等式,求出不等式的解集即可得到相應的x的范圍即分別為函數(shù)的遞增和遞減區(qū)間;
(2)因為A與B在函數(shù)圖象上,所以把A和B的坐標分別代入函數(shù)解析式中得到關于兩點縱坐標的兩個關系式,利用斜率的算法表示出斜率k,然后利用中點坐標公式根據(jù)A和B的橫坐標表示出中點G的橫坐標,并把求出的G橫坐標的值代入導函數(shù),利用反證法證明,方法是:假設表示出的斜率k等于G的橫坐標在導函數(shù)的函數(shù)值,化簡后令t=,u(t)=lnt-,求出u(t)的導函數(shù),判斷出導函數(shù)大于0得到u(t)為增函數(shù),得到u(t)小于0與題意矛盾,所以假設錯誤,故f′(x)≠k.
解答:解:(1)f(x)的定義域為(0,+∞),
∵f′(x)=
∴b=a-1,∴f′(x)=,
當f′(x)>0時,得-
∵x>0,a>0,解得0<x<1,
當f′(x)<0時,得-,∵x>0,a>0,解得x>1,
;∴當f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;

(2)因A、B在的圖象上,
,

,

假設k=f′(x),則得:,

,令
,
∴u(t)在(0,1)上是增函數(shù),∴u(t)<u(1)=0,
,所以假設k=f′(x)不成立,
故f′(x)≠k.
點評:此題考查學生會利用導函數(shù)的正負求出函數(shù)的單調(diào)區(qū)間,靈活運用中點坐標公式化簡求值,掌握反證法進行命題證明的方法,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式+bx(a>0)且f′(1)=0,
(1)試用含a的式子表示b,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)為函數(shù)f(x)圖象上不同兩點,G(x0,y0)為AB的中點,記AB兩點連線斜率為K,證明:f′(x0)≠K

查看答案和解析>>

科目:高中數(shù)學 來源:2011年河南省開封市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)+bx(a>0)且f′(1)=0,
(1)試用含a的式子表示b,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)為函數(shù)f(x)圖象上不同兩點,G(x,y)為AB的中點,記AB兩點連線斜率為K,證明:f′(x)≠K.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河南省豫南九校高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)+bx(a>0)且f′(1)=0,
(1)試用含a的式子表示b,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)為函數(shù)f(x)圖象上不同兩點,G(x,y)為AB的中點,記AB兩點連線斜率為K,證明:f′(x)≠K.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)=+bx,其中a>0,b>0,x∈(0,+∞),確定的單調(diào)區(qū)間,并證明在每個單調(diào)區(qū)間上的增減性.

      

查看答案和解析>>

同步練習冊答案