已知橢圓,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點。設,則等于(   )

A.         B.         C.          D.

 

【答案】

B

【解析】

試題分析:解:由題意a=5,b=3,c=4,所以F點坐標為(4,0)

設直線l方程為:y=k(x﹣4),A點坐標為(x1,y1),B點坐標為(x2,y2),得P點坐標(0,﹣4k),

因為,所以(x1,y1+4k)=λ1(4﹣x1,﹣y1

因為,所以(x2,y2+4k)=λ2(4﹣x2,﹣y2).

得λ1=,λ2=

直線l方程,代入橢圓,消去y可得(9+25k2)x2﹣200k2x+400k2﹣225=0.

所以x1+x2=,x1x2=

所以λ12====,故選B.

考點:直線與橢圓的位置關系

點評:解決的關鍵是根據(jù)直線與橢圓的方程聯(lián)立方程組,結合向量的坐標關系來得到,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案