已知橢圓,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點。設,則等于( )
A. B. C. D.
B
【解析】
試題分析:解:由題意a=5,b=3,c=4,所以F點坐標為(4,0)
設直線l方程為:y=k(x﹣4),A點坐標為(x1,y1),B點坐標為(x2,y2),得P點坐標(0,﹣4k),
因為,所以(x1,y1+4k)=λ1(4﹣x1,﹣y1)
因為,所以(x2,y2+4k)=λ2(4﹣x2,﹣y2).
得λ1=,λ2=.
直線l方程,代入橢圓,消去y可得(9+25k2)x2﹣200k2x+400k2﹣225=0.
所以x1+x2=,x1x2=.
所以λ1+λ2====,故選B.
考點:直線與橢圓的位置關系
點評:解決的關鍵是根據(jù)直線與橢圓的方程聯(lián)立方程組,結合向量的坐標關系來得到,屬于基礎題。
科目:高中數(shù)學 來源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源:不詳 題型:解答題
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com