A. | -2$\sqrt{2}$<m<2$\sqrt{2}$ | B. | -2<m<2 | C. | m≤2$\sqrt{2}$ | D. | -2≤m≤2 |
分析 設(shè)2x=t,t>0,則t2-tm+2=(t-$\frac{m}{2}$)2+2-$\frac{{m}^{2}}{4}$≥$2-\frac{{m}^{2}}{4}$>0,由此能求出實數(shù)m的取值范圍.
解答 解:設(shè)2x=t,t>0,
∵任意實數(shù)x,若不等式4x-m•2x+2>0恒成立,
∴t2-tm+2>0恒成立,
∴t2-tm+2=(t-$\frac{m}{2}$)2+2-$\frac{{m}^{2}}{4}$≥$2-\frac{{m}^{2}}{4}$>0,
解得-2$\sqrt{2}$<m<2$\sqrt{2}$.
故選:A.
點評 本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)、換元法、配方法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}+1}}{4}$ | B. | +1 | C. | $\frac{{\sqrt{3}-1}}{4}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x1)≥m,f(x2)<m | B. | f(x1)<m,f(x2)>m | C. | f(x1)<m,f(x2)<m | D. | f(x1)>m,f(x2)>m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | [0,2) | C. | [-2,0) | D. | (-2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com