求由曲線y=x2,y=
1
x
及x=2所圍成的平面圖形的面積.
考點:定積分在求面積中的應(yīng)用
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:作出對應(yīng)的區(qū)域,利用積分即可求出面積.
解答: 解:由
y=x2
y=
1
x
,解得
x=1
y=1
,
則由積分的幾何意義可知,所求的區(qū)域面積S=
2
1
(x2-
1
x
)dx
=(
1
3
x3-lnx
)|
 
2
1
=
8
3
-ln2
-(
1
3
-ln1

=
7
3
-ln2
點評:本題主要考查積分的應(yīng)用,要求熟練掌握常見函數(shù)的積分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b>0,實數(shù)x,y滿足不等式組
x+2y≤2
2x+y≤2
x≥0,y≥0
,則當(dāng)
2a
a+b
+
b
a
取得最小值時,z=bx+ay取最大值的最優(yōu)解為(  )
A、(0,0)
B、(1,0)
C、(0,1)
D、(
2
3
,
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列關(guān)于x的方程:
(1)2sinx+cosx=2;
(2)sin2x=sin2x;
(3)cosx+2=2tan2
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
6
)+cos2x+
3
sinxcosx.
(1)若|x|<
π
4
,求函數(shù)f(x)的值域;
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,若f(
A
2
)=
5
2
,cos(A+C)=-
5
3
14
,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x+a)-lnx,其中a為常數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)問過坐標(biāo)原點可以作幾條直線與曲線y=f(x)相切?并說明理由;
(3)若g(x)=f(x)•e-x在區(qū)間(0,1)內(nèi)是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,圓C:(x-2)2+(y-b)2=r2經(jīng)過點(1,0),且圓C被x軸和y軸截得的弦長之比為1:
6
,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,水渠的橫截面積是等腰梯形,下底及兩邊坡的總長度為a,坡AD的傾角為60°,
(1)求橫截面的面積y與下底AB的寬x之間的函數(shù)解析式;
(2)若x∈[
a
4
a
2
],求y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)f(x)=
1
3
x3+x2+mx+1有兩個不同的極值點;命題q:函數(shù)f(x)=x2-mx+3在區(qū)間[-1,2]是單調(diào)減函數(shù).若p且¬q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

樣本容量為100的頻率分布直方圖如圖所示,由此估計樣本數(shù)據(jù)落在[6,10]內(nèi)的頻數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案