【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:,
【答案】(1)(2)(3)該小組所得線性回歸方程是理想的
【解析】試題分析:(1)第(1)問,一般直接利用古典概型的概率公式計(jì)算. (2)第(2)問,先計(jì)算出回歸方程的基本量,再代入回歸方程即可. (3)計(jì)算出x=10和x=6對應(yīng)的誤差,再判斷.
試題解析:(1)設(shè)抽到相鄰兩個月的數(shù)據(jù)為事件A.因?yàn)閺?組數(shù)據(jù)中選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的其中,抽到相鄰兩個月份的數(shù)據(jù)的情況有5種,所以.
(2)由數(shù)據(jù)求得,由公式求得,再由.
所以y關(guān)于x的線性回歸方程為.
(3)當(dāng)x=10時,;同樣,當(dāng)x=6時,,
所以該小組所得線性回歸方程是理想的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=xlnx.
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)對x≥1,f(x)≤m(x2﹣1)成立,求實(shí)數(shù)m的最小值;
(3)證明:1n .(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* .
(1)證明:數(shù)列{ }是等差數(shù)列;
(2)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義非零向量的“相伴函數(shù)”為(),向量稱為函數(shù)的“相伴向量”(其中為坐標(biāo)原點(diǎn)),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為.
(1)已知(),求證:,并求函數(shù)的“相伴向量”模的取值范圍;
(2)已知點(diǎn)()滿足,向量的 “相伴函數(shù)”在處取得最大值,當(dāng)點(diǎn)運(yùn)動時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位將舉辦慶典活動,要在廣場上豎立一形狀為等腰梯形的彩門BADC (如圖),設(shè)計(jì)要求彩門的面積為S (單位:m2)高為h(單位:m)(S,h為常數(shù)),彩門的下底BC固定在廣場地面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長度和記為l.
(1)請將l表示成關(guān)于α的函數(shù)l=f(α);
(2)問當(dāng)α為何值時l最?并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地一天從 6 ~ 14 時的溫度變化曲線近似滿足函數(shù):,則中午 12 點(diǎn)時最接近的溫度為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com