設(shè)A,B是圓x2+y2=r2上關(guān)于原點中心對稱的兩定點,M是圓周上異于A,B的動點且kMA,kMB存在,則kMA·kMB=-1,類比上述結(jié)論:設(shè)A,B是曲線mx2+ny2=1(m,n≠0,且m≠n)上關(guān)于原點中心對稱的兩定 點,M是曲線上異于A,B的動點且kMA,kMB存在,則:(    )。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)P(a,b)(a•b≠0)、R(a,2)為坐標平面xoy上的點,直線OR(O為坐標原點)與拋物線y2=
4ab
x
交于點Q(異于O).
(1)若對任意ab≠0,點Q在拋物線y=mx2+1(m≠0)上,試問當m為何值時,點P在某一圓上,并求出該圓方程M;
(2)若點P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問:點Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)對(1)中點P所在圓方程M,設(shè)A、B是圓M上兩點,且滿足|OA|•|OB|=1,試問:是否存在一個定圓S,使直線AB恒與圓S相切.

查看答案和解析>>

科目:高中數(shù)學 來源:上海市徐匯區(qū)2010屆高三第二次模擬考試數(shù)學理科試題 題型:044

設(shè)P(a,b)(a·b≠0)、R(a,2)為坐標平面xoy上的點,直線OR(O為坐標原點)與拋物線y2x交于點Q(異于O).

(1)若對任意ab≠0,點Q在拋物線y=mx2+1(m≠0)上,試問當m為何值時,點P在某一圓上,并求出該圓方程M;

(2)若點P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問:點Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;

(3)對(1)中點P所在圓方程M,設(shè)A、B是圓M上兩點,且滿足|OA|·|OB|=1,試問:是否存在一個定圓S,使直線AB恒與圓S相切.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省淮安市清河區(qū)清江中學高考數(shù)學押題卷(解析版) 題型:解答題

設(shè)P(a,b)、R(a,2)為坐標平面xoy上的點,直線OR(O為坐標原點)與拋物線交于點Q(異于O).
(1)若對任意ab≠0,點Q在拋物線y=mx2+1(m≠0)上,試問當m為何值時,點P在某一圓上,并求出該圓方程M;
(2)若點P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問:點Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)對(1)中點P所在圓方程M,設(shè)A、B是圓M上兩點,且滿足|OA|•|OB|=1,試問:是否存在一個定圓S,使直線AB恒與圓S相切.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

設(shè)P(a,b)、R(a,2)為坐標平面xoy上的點,直線OR(O為坐標原點)與拋物線交于點Q(異于O).
(1)若對任意ab≠0,點Q在拋物線y=mx2+1(m≠0)上,試問當m為何值時,點P在某一圓上,并求出該圓方程M;
(2)若點P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問:點Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)對(1)中點P所在圓方程M,設(shè)A、B是圓M上兩點,且滿足|OA|•|OB|=1,試問:是否存在一個定圓S,使直線AB恒與圓S相切.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)、金山區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

設(shè)P(a,b)、R(a,2)為坐標平面xoy上的點,直線OR(O為坐標原點)與拋物線交于點Q(異于O).
(1)若對任意ab≠0,點Q在拋物線y=mx2+1(m≠0)上,試問當m為何值時,點P在某一圓上,并求出該圓方程M;
(2)若點P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問:點Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)對(1)中點P所在圓方程M,設(shè)A、B是圓M上兩點,且滿足|OA|•|OB|=1,試問:是否存在一個定圓S,使直線AB恒與圓S相切.

查看答案和解析>>

同步練習冊答案