設(shè)n∈N*,化簡(jiǎn)1+Cn1?九+Cn2?九2+Cn3?九3+…+Cnn?九n=______.
∵(1+6)6=C60+C61•6+C62•62+…+C6666
∴1+C61•6+…+C66•66=76
故答案為:76
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)先閱讀:
設(shè)可導(dǎo)函數(shù) f(x) 滿(mǎn)足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對(duì)x求導(dǎo),
得(f(-x))′=(-f(x))′,
由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
化簡(jiǎn)得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn
(x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
C
2
n
x+3
C
3
n
x2+4
C
4
n
x3+…+n
C
n
n
xn-1
;
(Ⅱ)當(dāng)整數(shù)n≥3時(shí),求
C
1
n
-2
C
2
n
+3
C
3
n
-…+(-1)n-1n
C
n
n
的值;
(Ⅲ)當(dāng)整數(shù)n≥3時(shí),證明:2
C
2
n
-3•2
C
3
n
+4•3
C
4
n
+…+(-1)n-2n(n-1)
C
n
n
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)n∈N*,化簡(jiǎn)1+Cn1?6+Cn2?62+Cn3?63+…+Cnn?6n=
7n
7n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各個(gè)面都是平行四邊形的四棱柱ABCD-A′B′C′D′
(1)化簡(jiǎn)
1
2
AA′
+
BC
+
2
3
AB
,并在圖形中標(biāo)出其結(jié)果;
(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′的對(duì)角線(xiàn)BC′上的點(diǎn),且BN:NC′=3:1,設(shè)
MN
AB
AD
AA′
,試求α,β,γ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•嘉定區(qū)三模)已知函數(shù)f(x)=lg(1+
1x
),點(diǎn)An(n,0)(n∈N*),過(guò)點(diǎn)An作直線(xiàn)x=n交f(x)的圖象于點(diǎn)Bn,設(shè)O為坐標(biāo)原點(diǎn).記θn=∠Bn+1AnAn+1(n∈N*),化簡(jiǎn)求和式Sn=tanθ1+tanθ2+…+tanθn=
lg(n+2)-lg2
lg(n+2)-lg2

查看答案和解析>>

同步練習(xí)冊(cè)答案