已知函數(shù)(其中為常數(shù)且  )的圖象經(jīng)過點.
(1)求的解析式;
(2)若不等式上恒成立,求實數(shù)的取值范圍.

(1)(2)

解析試題分析:(1)把點代入函數(shù)的解析式求出的值,即可求得的解析式.
(2)由(1)知上恒成立,設,利用g(x)在上是減函數(shù),能求出實數(shù)m的最大值.
試題解析:
(1)由題意得

(2)設

上是減函數(shù)
上的最小值
因為上恒成立


所以實數(shù)的取值范圍.
考點:函數(shù)恒成立問題;函數(shù)解析式的求解及常用方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是某重點中學學校運動場平面圖,運動場總面積15000平方米,運動場是由一個矩形和分別以、為直徑的兩個半圓組成,塑膠跑道寬8米,已知塑膠跑道每平方米造價為150元,其它部分造價每平方米80元,

(Ⅰ)設半圓的半徑(米),寫出塑膠跑道面積的函數(shù)關系式;
(Ⅱ)由于受運動場兩側看臺限制,的范圍為,問當為何值時,運動場造價最低(第2問取3近似計算).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)(m∈N)的圖象關于y軸對稱,且在(0,+∞)上是減函數(shù),求滿足的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設不等式的解集為M,求當x∈M時函數(shù)的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了降低能損耗,最近上海對新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=(0≤x≤10),若不建隔熱層,每年能消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù),且不等式的解集為.
(1)方程有兩個相等的實根,求的解析式;
(2)的最小值不大于,求實數(shù)的取值范圍;
(3)如何取值時,函數(shù)存在零點,并求出零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計算:
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的值域;
(2)若時,函數(shù)的最小值為,求的值和函數(shù) 的最大值。

查看答案和解析>>

同步練習冊答案