(2012•眉山一模)在地球北緯45°圈上有A、B兩點(diǎn),點(diǎn)A在西經(jīng)l0°,點(diǎn)B在東經(jīng)80°,設(shè)地球半徑為R,則A、B兩點(diǎn)的球面距離為
πR
3
πR
3
分析:由于A、B兩地在同一緯度圈上,可以先計(jì)算出它們的經(jīng)度差和45°的緯圓半徑,再求出A、B兩地對(duì)應(yīng)的AB弦長(zhǎng),以及球心角,最后求出球面距離.
解答:解:設(shè)北緯45°圈的半徑為r,
∵地球表面上從A地(北緯45°,西經(jīng)10°)
到B地(北緯45°,東經(jīng)80°)
∴甲、乙兩地對(duì)應(yīng)點(diǎn)的緯圓半徑是r=Rcos45°=
2
2
R

經(jīng)度差是80°-(-10°)=90°,
所以AB=
2
r=
2
2
2
R=R

∴△AOB是等邊三角形,球心角是∠AOB=
π
3

A、B兩地的球面距離是
πR
3

故答案為:
πR
3
點(diǎn)評(píng):本題主要考查了球面距離及相關(guān)計(jì)算,考查空間想象力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山一模)不等式
2xx-3
<1
的解集是
{x|-3<x<3}
{x|-3<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山一模)在對(duì)我市普通高中學(xué)生某項(xiàng)身體素質(zhì)的測(cè)試中.測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.8,則ξ在(0,1)內(nèi)取值的概率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山一模)已知正項(xiàng)數(shù)列{an}滿足a1=1,
a
2
n+1
-
a
2
n
-2an+1-2an=0(n∈N*)

(Ⅰ)求證:數(shù)列{an}是等差數(shù)列;
(Ⅱ)若Cn+1-Cn=an+1,且C1=1,求{Cn}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=
an+1
2n
,Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山一模)函數(shù)f(x)=ax3-6ax2+3bx+b,其圖象在x=2處的切線方程為3x+y-11=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若關(guān)于x的方程f(x)-m=0在[
12
,4]
上恰有兩個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍;
(Ⅲ)函數(shù)y=f(x)圖象是否存在對(duì)稱中心?若存在,求出對(duì)稱中以后坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案