在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.
(1)(x-3)2+(y-1)2=9.(2)a=-1.
【解析】(1)曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)為(0,1),(3±2,0).故可設(shè)圓心坐標(biāo)為(3,t),
則有32+(t-1)2=2+t2.
解得t=1,則圓的半徑為=3.
所以圓的方程為(x-3)2+(y-1)2=9.
(2)設(shè)A(x1,y1),B(x2,y2),其坐標(biāo)滿足方程組,
消去y得到方程2x2+(2a-8)x+a2-2a+1=0,
由已知可得判別式Δ=56-16a-4a2>0,
由根與系數(shù)的關(guān)系可得x1+x2=4-a,x1x2=,①
由OA⊥OB可得x1x2+y1y2=0.又y1=x1+a,y2=x2+a.所以2x1x2+a(x1+x2)+a2=0.
由①②可得a=-1,滿足Δ>0,故a=-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練9練習(xí)卷(解析版) 題型:選擇題
在等差數(shù)列{an}中,a1=-2 014,其前n項(xiàng)和為Sn,若=2,則S2 014的值等于( ).
A.-2 011 B.-2 012 C.-2 014 D.-2 013
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練17練習(xí)卷(解析版) 題型:填空題
某校開展“愛我海西、愛我家鄉(xiāng)”攝影比賽,9位評(píng)委為參賽作品A給出的分?jǐn)?shù)如莖葉圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后,算得平均分為91,復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清,若記分員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練15練習(xí)卷(解析版) 題型:解答題
設(shè)橢圓=1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若+=8,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練15練習(xí)卷(解析版) 題型:選擇題
已知雙曲線C與橢圓=1有共同的焦點(diǎn)F1,F2,且離心率互為倒數(shù).若雙曲線右支上一點(diǎn)P到右焦點(diǎn)F2的距離為4,則PF2的中點(diǎn)M到坐標(biāo)原點(diǎn)O的距離等于( ).
A.3 B.4 C.2 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練14練習(xí)卷(解析版) 題型:選擇題
直線ax+by=1與圓x2+y2=1相交于A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最小值為( ).
A.0 B. C.-1 D.+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練13練習(xí)卷(解析版) 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C?PB?A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:選擇題
已知m和n是兩條不同的直線,α和β是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出m⊥β的是( ).
A.α⊥β,且m?α B.m∥n,且n⊥β
C.α⊥β,且m∥α D.m⊥n,且n∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題
已知過(guò)A(-1,a),B(a,8)兩點(diǎn)的直線與直線2x-y+1=0平行,則a的值為( ).
A.-10 B.17 C.5 D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com