(本小題15分)

如圖在三棱錐P-ABC中,PA 分別在棱,

(1)求證:BC

(2)當D為PB中點時,求AD與平面PAC所成的角的余弦值;

 (3)是否存在點E,使得二面角A-DE-P為直二面角,并說明理由。

 

【答案】

 

  解:(1)

                           

(2)建立空間直角坐標系如圖,各點坐標分別為:

P(0,0,1),B(0,1,0), C

,

由DE平面PAC可知,即是所求的二面角的平面角。

,故所求二面角的余弦值為

(3)設D點的軸坐標為a,

,所以符合題意的E存在。

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:寧波市2010屆高三三�?荚嚴砜茢�(shù)學試題 題型:解答題

(本小題15分)如圖,四棱錐的底面為一直角梯形,其中

,底面,的中點.
(1)求證://平面
(2)若平面,
①求異面直線所成角的余弦值;
②求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年浙江省寧海縣正學中學高二下學期第二次階段性考試重點班文數(shù) 題型:解答題

(本小題15分)
如圖在三棱錐P-ABC中,PA 分別在棱,

(1)求證:BC
(2)當D為PB中點時,求AD與平面PAC所成的角的余弦值;
(3)是否存在點E,使得二面角A-DE-P為直二面角,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年福建師大附中高二第一學期期末數(shù)學理卷 題型:解答題

(本小題15分)

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1E⊥A1D ;

(2)當E為AB的中點時,求點E到面ACD1的距離;

(3)AE等于何值時,二面角D1-EC-D的大小為.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年浙江省高二下學期第二次階段性考試文數(shù) 題型:解答題

(本小題15分)

如圖在三棱錐P-ABC中,PA 分別在棱,

(1)求證:BC

(2)當D為PB中點時,求AD與平面PAC所成的角的余弦值;

 (3)是否存在點E,使得二面角A-DE-P為直二面角,并說明理由。

 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷