在平面直角坐標(biāo)系內(nèi),動(dòng)點(diǎn)P到x軸、y軸的距離之積等于1,則點(diǎn)P的軌跡方程是______.
設(shè)P(x,y),
由動(dòng)點(diǎn)P到x軸、y軸的距離之積等于1,
得|x||y|=1,
即xy=±1.
∴點(diǎn)P的軌跡方程是xy=±1.
故答案為xy=±1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩圓,求(1)它們的公共弦所在直線的方程;(2)公共弦長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程
(x+3)2+(y-1)2
=|x-y+3|表示的曲線是( 。
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓O′:(x-1)2+y2=36,點(diǎn)A(-1,0),M是圓上任意一點(diǎn),線段AM的中垂線l和直線O′M相交于點(diǎn)Q,則點(diǎn)Q的軌跡方程為( 。
A.
x2
9
-
y2
8
=1
B.
x2
8
+
y2
9
=1
C.
x2
9
+
y2
8
=1
D.
x2
8
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)F(
1
4
,0)
,直線l:x=-
1
4
,點(diǎn)B是l上的動(dòng)點(diǎn).若過B垂直于y軸的直線與線段BF的垂直平分線交于點(diǎn)M,則點(diǎn)M的軌跡是(  )
A.雙曲線B.橢圓C.圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于-
1
3
.求動(dòng)點(diǎn)P的軌跡方程.
(2)
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為2,原點(diǎn)到直線AB的距離為
3
2
,其中A(0,-b)、B(a,0)求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P(x,y)與兩定點(diǎn)M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(I)求動(dòng)點(diǎn)P的軌跡C的方程;
(II)試根據(jù)λ的取值情況討論軌跡C的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過原點(diǎn)O的橢圓有一個(gè)焦點(diǎn)F(0,4),且長(zhǎng)軸長(zhǎng)2a=10,求此橢圓的中心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知定點(diǎn)A(1,0),定圓C:(x+1)2+y2=8,M為圓C上的一個(gè)動(dòng)點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
AM
=2
AP
,
NP
AM
=0
,則點(diǎn)N的軌跡方程是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案