已知數(shù)列{an}、{bn}滿足:
(1)求b1,b2,b3,b4;
(2)求數(shù)列{bn}的通項公式;
(3)設Sn=a1a2+a2a3+a3a4+…+anan+1,求實數(shù)a為何值時4aSn<bn恒成立.
【答案】分析:(1)根據(jù),求出,和,令n=1,2,3即可求得b1,b2,b3,b4;
(2)根據(jù),進行變形得到,構造等差數(shù)列{},并求出其通項,進而可求出數(shù)列{bn}的通項公式;
(3)根據(jù)(2)結果,可以求出數(shù)列{an}的通項公式,然后利用裂項相消法求Sn,構造函數(shù)f(n)=(a-1)n2+(3a-6)n-8,轉化為求函數(shù)f(n)的最值問題,可求實數(shù)a的取值范圍.
解答:解:(1)∵
,,
,,
(2)∵

∴數(shù)列{}是以-4為首項,-1為公差的等差數(shù)列


(3),


由條件可知(a-1)n2+(3a-6)n-8<0恒成立即可滿足條件,
設f(n)=(a-1)n2+(3a-6)n-8
當a=1時,f(n)=-3n-8<0恒成立
當a>1時,由二次函數(shù)的性質知不可能成立
當a<1時,對稱軸
f(n)在(1,+∞)為單調遞減函數(shù).
f(1)=(a-1)n2+(3a-6)n-8=(a-1)+(3a-6)-8=4a-15<0
∴a<1時4aSn<b恒成立
綜上知:a≤1時,4aSn<b恒成立.
點評:此題是個難題.考查根據(jù)數(shù)列的遞推公式利用構造法求數(shù)列的通項公式,及數(shù)列的求和問題,題目綜合性強,特別是問題(3)的設置,數(shù)列與不等式恒成立問題結合起來,能有效考查學生的邏輯思維能力,體現(xiàn)了轉化的思想和分類討論的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1<0,
an+1
an
=
1
2
,則數(shù)列{an}是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,試證明數(shù)列{bn}為等比數(shù)列;
(II)求數(shù)列{an}的通項公式an與前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)二模)已知數(shù)列{an}中,an=-4n+5,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2),且b1=a2,則|b1|+|b2|+…+|bn|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+3n+1,則數(shù)列{an}的通項公式為
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n,那么它的通項公式為an=
2n
2n

查看答案和解析>>

同步練習冊答案