設(shè)數(shù)列{an}的首項(xiàng)a1=a≠,且,記,n=l,2,3,….
(Ⅰ)求a2,a3;
(Ⅱ)數(shù)列{bn}是否為等比數(shù)列,如果是,求出其通項(xiàng)公式;如果不是,請說明理由.
【答案】分析:(Ⅰ)利用已知條件直接求出求a2,a3;
(Ⅱ)利用(Ⅰ)求出a4,a5,通過,求出b1,b2,b3,猜想數(shù)列{bn}是等比數(shù)列,通過遞推關(guān)系式證明
bn+1=bn,即可求出通項(xiàng)公式.
解答:解:(Ⅰ)因?yàn)閿?shù)列{an}的首項(xiàng)a1=a≠,且,
所以,a2=a1+=a+,a3=a2=a+
(Ⅱ)數(shù)列{an}的首項(xiàng)a1=a≠,且,a3=a+
∴a4=a3+=a+
∴a5=a4=a+,
所以b1=a1-=,b2=a3-=,b3=a5-=
猜想:{bn}是公比為的等比數(shù)列.
證明如下:
因?yàn)閎n+1=a2n+1-=a2n-=-==bn,
所以{bn}是首項(xiàng)為,公比為的等比數(shù)列.

點(diǎn)評:本題考查數(shù)列的遞推關(guān)系式求解數(shù)列的特定項(xiàng),數(shù)列是等比數(shù)列的證明,以及通項(xiàng)公式的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
3
2
,前n項(xiàng)和為Sn,且滿足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an
(Ⅱ)求滿足
18
17
S2n
Sn
8
7
的所有n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=a≠
1
4
,且an+1=
1
2
an
(n為偶數(shù))
an+
1
4
(n為奇數(shù))
,n∈N*,記bn=a2n-1-
1
4
,cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3;
(2)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)當(dāng)a>
1
4
時,數(shù)列{cn}前n項(xiàng)和為Sn,求Sn最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
1
2
,且an+1=
2an
1+an
(n∈N*).
(1)求a2,a3,a4
(2)根據(jù)上述結(jié)果猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)二模)設(shè)數(shù)列{an}的首項(xiàng)a1=-
1
2
,前n項(xiàng)和為Sn,且對任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,數(shù)列{an}中的部分項(xiàng){abk}(k∈N*)成等比數(shù)列,且b1=2,b2=4.
(Ⅰ)求數(shù)列{an}與{bn}與的通項(xiàng)公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函數(shù)f(x),設(shè)f(x)的定義域?yàn)镽,記cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
5
4
,且an+1=
1
2
a
n
,n為偶數(shù)
an+
1
4
,n為奇數(shù)
,記bn=a2n-1-
1
4
,n=1,2,3,…
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若設(shè)數(shù)列{cn}的前n項(xiàng)和為Sn,cn=nbn,求Sn

查看答案和解析>>

同步練習(xí)冊答案