A. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | B. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | C. | $\frac{\sqrt{6}+\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,兩角和的正弦公式,求得要求式子的結(jié)果.
解答 解:將函數(shù)f(x)=2sin(2x+$\frac{π}{4}$)的圖象向右平移$\frac{π}{6}$,
得到函數(shù)g(x)=2sin[2(x-$\frac{π}{6}$)+$\frac{π}{4}$]=2sin(2x-$\frac{π}{12}$)的圖象,
則g($\frac{π}{4}$)=2sin$\frac{5π}{12}$=2sin($\frac{π}{6}$+$\frac{π}{4}$)=2sin$\frac{π}{6}$cos$\frac{π}{4}$+2cos$\frac{π}{6}$sin$\frac{π}{4}$
=2•$\frac{1}{2}$•$\frac{\sqrt{2}}{2}$+2•$\frac{\sqrt{3}}{2}$•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{2}$,
故選:C.
點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,兩角和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4$\frac{1}{5}$ | B. | 4$\frac{2}{5}$ | C. | 4$\frac{3}{5}$ | D. | 4$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≥-1 | B. | -1≤a≤0 | C. | a≤0 | D. | a≤-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com