精英家教網(wǎng)兩縣城A和B相距20km,現(xiàn)計劃在兩縣城外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關(guān),對城A和城B的總影響度為城A與城B的影響度之和,記C點到城A的距離為x km,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在的中點時,對城A和城B的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷弧上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點到城A的距離;若不存在,說明理由.
分析:(1)先利用AC⊥BC,求出BC2=400-x2,再利用圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,得到y(tǒng)和x之間的函數(shù)關(guān)系,最后利用垃圾處理廠建在的中點時,對城A和城B的總影響度為0.065求出k即可求出結(jié)果.
(11)先求出導(dǎo)函數(shù)以及導(dǎo)數(shù)為0的根,進而求出其單調(diào)區(qū)間,找到函數(shù)的最小值即可.
解答:解(1)由題意知AC⊥BC,BC2=400-x2y=
4
x2
+
k
400-x2
(0<x<20)

其中當(dāng)x=10
2
時,y=0.065,
所以k=9
所以y表示成x的函數(shù)為y=
4
x2
+
9
400-x2
(0<x<20)

(2)y=
4
x2
+
9
400-x2
,y′=-
8
x3
-
9×(-2x)
(400-x2)2
=
18x4-8(400-x2)2
x3(400-x2)2
,
令y'=0得18x4=8(400-x22
所以x2=160,即x=4
10
,
當(dāng)0<x<4
10
時,18x4<8(400-x22,即y'<0所以函數(shù)為單調(diào)減函數(shù),
當(dāng)4
10
<x<20
時,18x4>8(400-x22,即y'>0所以函數(shù)為單調(diào)增函數(shù).
所以當(dāng)x=4
10
時,即當(dāng)C點到城A的距離為4
10
時,函數(shù)y=
4
x2
+
9
400-x2
(0<x<20)
有最小值.
(注:該題可用基本不等式求最小值.)
點評:本題主要考查函數(shù)在實際生活中的應(yīng)用問題.涉及到函數(shù)解析式的求法以及利用導(dǎo)數(shù)研究函數(shù)的最值問題,屬于中檔題目,關(guān)鍵點在于把文字轉(zhuǎn)化為數(shù)學(xué)符號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:江蘇省泰州中學(xué)2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)文科試題 題型:044

兩縣城A和B相距20 km,現(xiàn)計劃在兩縣城外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的的距離有關(guān),對城A和城B的總影響度為城A與城B的影響度之和,記C點到城A的距離為x km,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在的中點時,對城A和城B的總影響度為0.065.

(1)按下列要求建立函數(shù)關(guān)系式:

(i)設(shè)∠CBA=(rad),將y表示成的函數(shù);并寫出函數(shù)的定義域.

(ii)設(shè)AC=x(km),將y表示成x的函數(shù);并寫出函數(shù)的定義域.

(2)請你選用(1)中的一個函數(shù)關(guān)系確定垃圾處理廠的位置,使建在此處的垃圾處理廠對城A和城B的總影響度最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省泰州中學(xué)2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:044

兩縣城A和B相距20 km,現(xiàn)計劃在兩縣城外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的的距離有關(guān),對城A和城B的總影響度為城A與城B的影響度之和,記C點到城A的距離為x km,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在的中點時,對城A和城B的總影響度為0.065.

(1)按下列要求建立函數(shù)關(guān)系式:

(i)設(shè)∠CBA=(rad),將y表示成的函數(shù);并寫出函數(shù)的定義域.

(ii)設(shè)AC=x(km),將y表示成x的函數(shù);并寫出函數(shù)的定義域.

(2)請你選用(1)中的一個函數(shù)關(guān)系確定垃圾處理廠的位置,使建在此處的垃圾處理廠對城A和城B的總影響度最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省模擬題 題型:解答題

兩縣城A和B相距20 km,現(xiàn)計劃在兩縣城外,以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關(guān),對城A和城B的總影響度為對城A與城B的影響度之和,記C點到城A的距離為x km,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在的中點時,對城A和城B的總影響度為0.065,
(Ⅰ)將y表示成x的函數(shù);
(Ⅱ)討論(Ⅰ)中函數(shù)的單調(diào)性,并判斷弧上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點到城A的距離;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案