二項(xiàng)式(2x2-
1
x
5的展開(kāi)式中x的系數(shù)為( 。
A、-20B、20
C、-40D、40
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:利用二項(xiàng)式(2x2-
1
x
5展開(kāi)式的通項(xiàng)公式即可求得答案.
解答: 解:設(shè)二項(xiàng)式(2x2-
1
x
5展開(kāi)式的通項(xiàng)為T(mén)r+1,
則Tr+1=
C
r
5
25-r•x2(5-r)•(-x)-r=
C
r
5
25-r•(-1)-r•x10-3r,
令10-3r=1得r=3,
∴二項(xiàng)式(2x2-
1
x
5展開(kāi)式中x的系數(shù)為
C
3
5
22•(-1)-3=-40.
故選:C.
點(diǎn)評(píng):本題考查二項(xiàng)式定理,著重考查二項(xiàng)展開(kāi)式的通項(xiàng)公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x-1
x-2
的定義域?yàn)椋ā 。?/div>
A、(1,+∞)
B、[1,2)∪(2,+∞)
C、[1,2)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩名運(yùn)動(dòng)員在某項(xiàng)測(cè)試中的8次成績(jī)?nèi)缜o葉圖所示,則甲運(yùn)動(dòng)員的極差與乙運(yùn)動(dòng)員的眾數(shù)分別是( 。
A、20、80
B、20、81
C、17、80
D、17、81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車(chē)間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù),按十位數(shù)學(xué)為莖,個(gè)位數(shù)學(xué)為葉得到的莖葉圖如圖所示,已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.
(Ⅰ)求m,n的值;
(Ⅱ)別求出甲、乙兩組數(shù)據(jù)的方差S2和S2,并由此分析兩組技工的加工水平;
(Ⅲ)質(zhì)檢部門(mén)從該車(chē)間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件數(shù)之和大于17,則稱該車(chē)間“質(zhì)量合格”,求該車(chē)間“質(zhì)量合格”的概率.
(注:
.
x
為數(shù)據(jù)x1,x2,…xn的平均數(shù),方差S2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2])

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x|x-a|,a>0
(1)若a=1時(shí),判斷f(x)的奇偶性;
(2)寫(xiě)出函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=a-
3
4
在區(qū)間[1,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x+2)7展開(kāi)式中含x4項(xiàng)的系數(shù)為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將分針撥慢5分鐘,則分鐘轉(zhuǎn)過(guò)的弧度數(shù)是( 。
A、
π
3
B、-
π
3
C、
π
6
D、
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈[0,1],則函數(shù)y=
2x+2
-
1-x
的最小值為
 
,最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案