為了檢驗(yàn)?zāi)撤N產(chǎn)品的質(zhì)量,決定利用隨機(jī)數(shù)表法從300件產(chǎn)品中抽取5件檢查,300件產(chǎn)品編號(hào)為000,001,002,…,299,下圖為隨機(jī)數(shù)表的第7行和第8行,若選擇隨機(jī)數(shù)表第7行第5列作為起始數(shù)字,并向右讀數(shù),依次得到的5個(gè)樣本號(hào)碼中的第二個(gè)號(hào)碼為
 

第7行 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
第8行63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79.
考點(diǎn):系統(tǒng)抽樣方法
專(zhuān)題:概率與統(tǒng)計(jì)
分析:隨機(jī)數(shù)表法也是簡(jiǎn)單隨機(jī)抽樣的一種方法,采用隨機(jī)數(shù)表法讀數(shù)時(shí)可以從左向右,也可以從右向左或者從上向下等等.應(yīng)該注意的是,在讀數(shù)中出現(xiàn)的相同數(shù)據(jù)只取一次,超過(guò)編號(hào)的數(shù)據(jù)要剔除.
解答: 解:若選擇隨機(jī)數(shù)表第7行第5列作為起始數(shù)字,
第一個(gè)號(hào)碼為175,然后是331,572,455,068,
則滿(mǎn)足條件的第2個(gè)號(hào)碼為068.
故答案為:068.
點(diǎn)評(píng):本題主要考查簡(jiǎn)單隨機(jī)抽樣的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos70°cos10°+sin70°sin10°的值是( 。
A、80
B、60
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)給定三個(gè)向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(Ⅰ)設(shè)向量
d
=
8
a
+
8
b
,且|
d
|=
10
,求向量
d
的坐標(biāo);
(Ⅱ) 若(
a
+k
c
)∥(2
b
-
a
),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)為奇函數(shù),且在(0,+∞)上是減函數(shù),又f(3)=0,則
f(x)-f(-x)
x
<0的解集為(  )
A、(-3,3)
B、(-∞,-3)∪(0,3)
C、(-3,0)∪(3,+∞)
D、(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):cos40°•2sin40°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2
1+x
1-x
,求證:f(x1)+f(x2)=f(
x1+x2
1+x1x2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出命題的“若p,則q”形式,并寫(xiě)出它的逆命題、否命題與逆否命題并判斷它們的真假.
命題:兩直線(xiàn)平行,同位角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對(duì)于函數(shù)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點(diǎn)P(x0,y0)(其中x0在x1與x2之間),使得點(diǎn)P處的切線(xiàn)l平行于直線(xiàn)AB,則稱(chēng)AB存在“伴隨切線(xiàn)”,當(dāng)x0=
x1+x2
2
時(shí),又稱(chēng)AB存在“中值伴隨切線(xiàn)”.試判斷函數(shù)f(x)的圖象上是否存在“中值伴隨切線(xiàn)”,若存在,請(qǐng)求出“中值伴隨切線(xiàn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是Ac,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)求棱錐A1-CBED的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案