精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明PA∥平面EDB;
(2)求證:平面BDE⊥平面PBC;
(3)求PB與平面ABCD所成角的正切值.
分析:(1)欲證PA∥平面EDB,根據(jù)直線與平面平行的判定定理可知只需證PA與平面EDB內(nèi)一直線平行,連接AC,交BD于O,連接EO,根據(jù)中位線定理可知EO∥PA,PA?平面EDB,EO?平面EDB,滿足定理所需條件;
(2)證明平面BDE⊥平面PBC,只需證明DE⊥平面PBC;
(3)根據(jù)線面所成角的定義可知∠PBD是PB與底面ABCD所成的角,從而可求PB與底面ABCD所成角的正切值;.
解答:精英家教網(wǎng)(1)證明:連接AC,交BD于O,連接EO,則O是AC的中點.
∵E是PC的中點,∴EO∥PA,
∵PA?平面EDB,EO?平面EDB,
∴PA∥平面EDB;
(2)證明:∵PD=DC,E是PC的中點,
∴DE⊥PC,
∵PD⊥底面ABCD,
∴BC?底面ABCD,
∴PD⊥BC,
∵底面ABCD是正方形,
∴BC⊥DC,
∵PD∩DC=D,
∴BC⊥平面PDC,
∴BC⊥DE,
∵PC∩BC=C,
∴DE⊥平面PBC,
∵DE?平面BDE,
∴平面BDE⊥平面PBC;
(3)解:∵PD⊥底面ABCD,
∴∠PBD是PB與平面ABCD所成角,
∵底面ABCD是正方形,PD⊥底面ABCD,PD=DC,
∴tan∠PBD=
2
2
點評:本題考查直線與平面平行的判定,以及直線與平面所成角和二面角及其度量,考查面面垂直,考查空間想象能力,邏輯思維能力,計算能力,正確運用線面平行、面面垂直的判定定理是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案