在△ABC中,若a=2,b=1,∠B=45°,則此三角形有
 
個(gè)解.
考點(diǎn):正弦定理
專題:解三角形
分析:根據(jù)題意和正弦定理求出sinA,再由內(nèi)角的范圍求出sinA,再判斷出解的個(gè)數(shù).
解答: 解:由題意得,在△ABC中,a=2,b=1,∠B=45°,
由正弦定理得,
a
sinA
=
b
sinB
,
則sinA=
asinB
b
=
2
2
1
=
2
,
由0<A<π,則sinA≤1,所以無解,
故答案為:0.
點(diǎn)評:本題考查正弦定理的應(yīng)用,以及一題多解問題,熟練掌握正弦定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知3a+13b=17a,5a+7b=11b,試判斷a、b的大小并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log2
x-1
x+1
的導(dǎo)數(shù)為( 。
A、y′=
2ln2
x2-1
B、y′=
ln2
x2-1
C、y′=
2log2e
x2-1
D、y′=
2(x2-1)
ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,A、B兩點(diǎn)的坐標(biāo)分別為(0,1)、(0,-1),動(dòng)點(diǎn)P滿足直線AP與直線BP的斜率之積為-
1
4
,直線AP、BP與直線y=-2分別交于點(diǎn)M、N.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)求線段MN的最小值;
(3)以MN為直徑的圓是否經(jīng)過某定點(diǎn)?若經(jīng)過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不經(jīng)過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2sin(2x-
π
6
)
與y軸最近的對稱軸方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:tan2α-sin2α=tan2α•sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

倉庫的房頂呈四棱錐形,量得底面的邊長為2.6米,側(cè)棱長2.1米,現(xiàn)在要在房頂上鋪一層油氈紙的面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2x-1
+
1
2
)•x2
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<x1<x2
π
2

(Ⅰ)證明:x1>sinx1
(Ⅱ)x1sinx2cosx1>x2sinx1cosx2

查看答案和解析>>

同步練習(xí)冊答案