如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.
(1)求證:平面PBC⊥面PDC
(2)設(shè)E為PC上一點,若二面角B-EA-P的余弦值為-,求三棱錐E-PAB的體積.
(1)見解析
(2)
(1)∵AB=1,PA=2,∠PAB=60°,∴在△PAB中,由余弦定理得
PB2=PA2+AB2-2AB·PAcos600=4+1-2×1×2×=3
∴PA2=PB2+AB2,即AB⊥PB
∵DA⊥面ABP,CB∥DA
∴CB⊥面ABPCB⊥AB ,∴AB⊥面PBC
又DC∥AB,∴DC∥面PBC
∵DC面PDC,∴平面PBC⊥面PDC
(2)如圖建立空間直角坐標(biāo)系

則A(0,1,0),P(,0,0),C(0,0,1)
設(shè)E(x,y,z),= (0<<1)
則(-,0,1)=(x-,y,z)x=(1-),y=0,z=
設(shè)面ABE的法向量為n=(a,b,c),則
令c=n=(,0,)
同理可求平面PAE的法向量為m=(1,,)
∵cos<n,m>====
==1(舍去)
∴E(,0,)為PC的中點,其豎坐標(biāo)即為點E到底面PAB的距離
∴VE-PAB=××1××=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形PCBM是直角梯形,,,.又,,直線與直線所成的角為60°.
(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點E,F(xiàn)分別為棱AC,AD的中點.

(1)求證:DC平面ABC;     
(2)設(shè),求三棱錐A-BFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓錐母線長為6,底面圓半徑長為4,點是母線的中點,是底面圓的直徑,半徑與母線所成的角的大小等于

(1)求圓錐的側(cè)面積和體積.
(2)求異面直線所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,直觀圖四邊形A′B′C′D′是一個底角為45°的等腰梯形,那么原平面圖形是( 。
A.任意梯形B.直角梯形C.任意四邊形D.平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以邊長為1的正方形的一邊所在所在直線為旋轉(zhuǎn)軸,將該正方形旋轉(zhuǎn)一周所得圓柱的側(cè)面積等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平面平面,且四邊形為矩形,四邊形為直角梯形,
,,,,.
(1)作出這個幾何體的三視圖(不要求寫作法).
(2)設(shè)是直線上的動點,判斷并證明直線與直線的位置關(guān)系.
(3) 求三棱錐的體積..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,正四棱錐P-ABCD的底面積為3,體積為,E為側(cè)棱PC的中點,則PA與BE所成的角為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個圓柱和一個圓錐的底面直徑和它們的高都與某一個球的直徑相等,這時圓柱、圓錐、球的體積之比為          .

查看答案和解析>>

同步練習(xí)冊答案