【題目】已知數(shù)列的各項(xiàng)均為整數(shù),其前n項(xiàng)和為.規(guī)定:若數(shù)列滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列為“r關(guān)聯(lián)數(shù)列”.

(1)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,求數(shù)列的通項(xiàng)公式;

(2)在(1)的條件下,求出,并證明:對(duì)任意,;

3)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,當(dāng)時(shí),之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求,并探究在數(shù)列中是否存在三項(xiàng),,其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng);若不存在,說明理由.

【答案】(1)

(2),證明見解析

(3),不存在,理由見解析

【解析】

1)根據(jù)題意得到,,且.解得即可求出的通項(xiàng)公式.

(2)由(1)得,利用換元法證明數(shù)列的最小項(xiàng)為,即可證明對(duì)任意,.

3)由(1)可知,當(dāng)時(shí),,由此可得出.假設(shè)在數(shù)列中存在三項(xiàng),,(其中,成等差數(shù)列)成等比數(shù)列,則,推導(dǎo)出故,這與題設(shè)矛盾,所以在數(shù)列中不存在三項(xiàng),,(其中,成等差數(shù)列)成等比數(shù)列.

(1)∵為“6關(guān)聯(lián)數(shù)列”,

前6項(xiàng)為等差數(shù)列,從第5項(xiàng)起為等比數(shù)列.

,,且.

,解得.

.

(2)由(1)得.

,

,

可見數(shù)列的最小項(xiàng)為.

由列舉法知:當(dāng)時(shí),;

當(dāng)時(shí),),

設(shè),則

(3)由(1)可知,當(dāng)時(shí),,

因?yàn)椋?/span>,.

故:.

假設(shè)在數(shù)列中存在三項(xiàng),,(其中,,成等差數(shù)列)成等比數(shù)列,

則:,即:,

(*)

因?yàn)?/span>,,成等差數(shù)列,所以

(*)式可以化簡(jiǎn)為

即:,故,這與題設(shè)矛盾.

所以在數(shù)列中不存在三項(xiàng),(其中,成等差數(shù)列)成等比數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,,,平面平面,為棱上一點(diǎn)(不與、重合),平面交棱于點(diǎn).

1)求證:;

2)若二面角的余弦值為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的焦距為,且右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形.若直線l與橢圓C交于,且在橢圓C上存在點(diǎn)M,使得:(其中O為坐標(biāo)原點(diǎn)),則稱直線l具有性質(zhì)H.

1)求橢圓C的方程;

2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;

3)求證:在橢圓C上不存在三個(gè)不同的點(diǎn)PQ、R,使得直線、都具有性質(zhì)H.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個(gè)公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)圖象的一段,點(diǎn)M到l1、l2的距離分別為8千米和1千米,點(diǎn)N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy,設(shè)點(diǎn)P的橫坐標(biāo)為p.

(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;

(2)若某人從點(diǎn)O沿公路至點(diǎn)P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是定義在R上的兩個(gè)函數(shù),滿足 滿足,且當(dāng)時(shí),,.若在區(qū)間上,關(guān)于的方程8個(gè)不同的實(shí)數(shù)根,則k的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)已知函數(shù)時(shí)總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李克強(qiáng)總理在很多重大場(chǎng)合都提出大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬(wàn)元做創(chuàng)業(yè)資金,每月獲得的利潤(rùn)是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤(rùn))的,每月的生活費(fèi)等開支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營(yíng).如此每月循環(huán)繼續(xù).

1)問到2015年年底(按照12個(gè)月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)

2)如果銀行貸款的年利率為,問該創(chuàng)客一年(12個(gè)月)能否還清銀行貸款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=sinxcosxcos2x+1

1)求fx)的最小正周期和最大值,并寫出取得最大值時(shí)x的集合;

2)將fx)的函數(shù)圖象向左平移φφ0)個(gè)單位后得到的函數(shù)gx)是偶函數(shù),求φ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案