(選做題)二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).設直線l在變換M作用下得到了直線m:2x-y=4,求直線l的方程.
分析:設M=
ab
cd
,則
ab
cd
1 
-1 
=
-1 
-1 
,
ab
cd
-2 
1 
=
0 
-2 
,所以M=
12
34
,由此能求出直線l的方程.
解答:解:設M=
ab
cd
,則
ab
cd
1
-1
=
-1
-1

ab
cd
-2
1
=
0
-2
,
a-b=-1
c-d=-1
,且
-2a+b=0
-2c+d=-2
,
解得a=1,b=2,c=3,d=4,
∴M=
12
34
,
x
y
=
12
34
x
y
=
x+2y
3x+4y
,
且m:2x′-y′=4,
∴2(x+2y)-(3x+4y)=4,
即x+4=0,
∴直線l的方程x+4=0.
點評:本題考查直線的向量方程的求法,是基礎題.解題時要認真審題,仔細解答,注意二階矩陣的性質(zhì)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先在答題卡上把所選題目對應的題號填入括號中.
(1)選修4-2:矩陣與變換
已知二階矩陣M=
a1
3d
有特征值λ=-1及對應的一個特征向量e1=
1
-3

(Ⅰ)求距陣M;
(Ⅱ)設曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,曲線C的參數(shù)方程為
x=2+t
y=t+1
(t
為參數(shù)),曲線P在以該直角坐標系的原點O的為極點,x軸的正半軸為極軸的極坐標系下的方程為p2-4pcosθ+3=0.
(Ⅰ)求曲線C的普通方程和曲線P的直角坐標方程;
(Ⅱ)設曲線C和曲線P的交點為A、B,求|AB|.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求實數(shù)t的取值范圍;
(Ⅱ)記t的最大值為T,若正實數(shù)a、b、c滿足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江蘇省蘇錫常鎮(zhèn)四市高考數(shù)學一模試卷(解析版) 題型:解答題

(選做題)二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).設直線l在變換M作用下得到了直線m:2x-y=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省月考題 題型:解答題

(選做題)
二階矩陣M對應的變換將點(1,﹣1)與(﹣2,1)分別變換成點(﹣1,﹣1)與(0,﹣2).
(1)求矩陣M;
(2)設直線l在變換M作用下得到了直線m:x﹣y=4,求l的方程.

查看答案和解析>>

同步練習冊答案